Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 787-793    DOI: 10.11901/1005.3093.2014.599
  本期目录 | 过刊浏览 |
轴对称磁场对电弧离子镀TiN-Cu纳米复合膜性能的影响
宋贵宏1(),肖金泉2,杜昊2,陈立佳1
1. 沈阳工业大学材料科学与工程学院 沈阳 110870
2. 中国科学院金属研究所材料表面工程研究部 沈阳 110016
Influence of Axisymmetric Magnetic Field on Properties of TiN-Cu Nanocomposite Films Prepared by Arc Ion Plating
Guihong SONG1,**(),Jinquan XIAO2,Hao DU2,Lijia CHEN1
1. School of Material Science and Technology, Shenyang University of Technology, Shenyang 110870, China
2. Division of surface engineering of materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋贵宏,肖金泉,杜昊,陈立佳. 轴对称磁场对电弧离子镀TiN-Cu纳米复合膜性能的影响[J]. 材料研究学报, 2015, 29(10): 787-793.
Guihong SONG, Jinquan XIAO, Hao DU, Lijia CHEN. Influence of Axisymmetric Magnetic Field on Properties of TiN-Cu Nanocomposite Films Prepared by Arc Ion Plating[J]. Chinese Journal of Materials Research, 2015, 29(10): 787-793.

全文: PDF(3188 KB)   HTML
摘要: 

在电弧离子镀靶后端加入轴对称线圈磁场, 制备了TiN-Cu纳米复合膜。观察线圈磁场强度对靶表面电弧斑点游动速率和弧柱形状的影响, 及其对沉积薄膜的表面形貌、沉积速率、纳米压痕硬度和弹性模量的影响。结果表明, 提高线圈磁场强度可提高电弧斑点的游动速率, 进而降低靶表面金属液滴喷射几率, 减小沉积薄膜中大颗粒的尺寸和数量。X射线衍射(XRD)谱显示, 沉积薄膜只含有TiN相, 未出现金属Cu或其化合物的衍射峰; 薄膜呈现明显的(111)晶面择优取向。随着线圈磁场强度的提高薄膜沉积速率、压痕硬度和弹性模量先增加, 达到最大值后又略有减少, 其最大硬度和弹性模量分别达到35.46 GPa和487.61 GPa。

关键词 复合材料TiN-Cu纳米复合膜硬度电弧离子镀磁场强度大颗粒沉积速率    
Abstract

TiN-Cu nanocomposite films were deposited on high speed steel by arc ion plating with an axisymmetric coil magnetic field at the back of the target. The influence of the coil magnetic field intensity on the moving rate of cathode spot and arc column shape on the target surface, as well as on the surface morphology, deposition rate, nanoindentation hardness and elastic modulus of the deposits was investigated. It is shown that the emitting probability of the melt metal drops on the target decreases, and the size and quantity of the macroparticles in the deposited films reduces with the increasing coil magnetic field intensity. The deposited films consists merely of TiN phase without metal Cu phase or Cu compound and possess an obvious preferred orientation along (111) plane. The deposition rate, indentation hardness and elastic modulus of the films increase rapidly to a maximum value and then decrease slightly with the increasing coil magnetic field intensity. The maximum values of hardness and elastic modulus are 35.46 GPa and 487.61 GPa, respectively.

Key wordscomposites    TiN-Cu nanocomposite film    hardness    arc ion plating    magnetic field intensity    macroparticle    deposition rate
收稿日期: 2014-10-17     
基金资助:* 国家自然科学基金51171197及广东省产学研合作重大专项2013A090100003资助项目。
图1  磁场线圈和电弧离子镀装置的示意图
图2  电弧离子镀阴极靶表面的弧斑游动
图3  电弧离子镀阴极靶附近弧柱形状
图4  不同磁场强度下沉积薄膜的表面形貌
图5  不同磁场强度下薄膜的横截面形貌
图6  不同线圈磁场强度下沉积膜的XRD谱
Magnetic field intensity /Gs Texture coefficient
T(111) T(200) T(220) T(311) T(222)
0 1.7561 0.1112 0.6016 0.2074 2.0236
472 1.7907 0.2161 0.4335 0.5609 1.9986
681 2.9005 0.0990 0.2670 0.3172 3.3167
885 2.1457 0.0575 0.2196 0.1126 2.4633
表1  沉积膜的织构系数与线圈磁场强度的关系
图7  沉积膜的压痕硬度与线圈磁场强度的关系
图8  沉积膜的弹性模量与线圈磁场强度的关系
图9  沉积膜的压痕硬度与弹性模量比值(H/E)与线圈磁场强度的关系
1 G. Ramírez?, D. Oezer, M. Rivera, S.E. Rodil, R. Sanjinés,TaSiN nanocomposite thin films: Correlation between structure, chemical composition, and physical properties, Thin Solid?Films, 558, 104(2014).
2 J. Shi, C. M. Muders, A. Kumar, X. Jiang, Z.L. Pei, J. Gong, C. Sun,Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating, Applied Surface Science, 258, 9642(2012)
3 J. H. Hsieh, M. K. Cheng, C. Li, S. H. Chen, Y. G. Chang,Study of Cu emergence on the surface of TaN-Cu nanocomposite thin films and its effects on tribological property, Thin Solid Films, 516, 5430(2008)
4 Mukesh Kumar, R. Mitra,Effect of substrate bias on microstructure and properties of Ni-TiN nanocomposite thin films deposited by reactive magnetron co-sputtering, Surface and Coatings Technology, 251, 239(2014)
5 C. C. Tseng, J. H. Hsieh, W. Wu, S. Y. Chang, C. L. Chang,Surface and mechanical characterization of TaN–Ag nanocomposite thin films, Thin Solid Films, 516, 5424(2008)
6 XIAO Jinquan,LANG Wenchang, ZHAO Yanhui, GONG Jun, SUN Chao, WEN Lishi, Influence of axisymmetric magnetic field on the microstructure and friction performance of TIN film deposited by arc ion plating, Acta metallurgica sinica, 47(5), 566(2011)
6 (肖金泉, 朗文昌, 赵彦辉, 宫 骏, 孙 超, 闻立时, 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响. 金属学报, 47(5), 566(2011))
7 LANG Wenchang,XIAO Jinquan, GONG Jun, SUN Chao, HUANG Rongfang, WEN Lishi, Influence of axisymmetric magnetic field on cathode spots movement in arc ion plating, Acta metallurgica sinica, 46(3), 372(2010)
7 (朗文昌, 肖金泉, 宫 骏, 孙 超, 黄荣芳, 闻立时, 轴对称磁场对电弧离子镀弧斑运动的影响, 金属学报, 46(3), 372(2010))
8 J. Q. Xiao, W. C. Lang, J. Gong, C. Sun, R. F. Huang, L. S. Wen. Effects of axisymmetric?magnetic field?on the distribution of Macroparticles on TiN(Ti,Al) N films by?arc ion plating, Physics Procedia, 18, 193(2011).
9 SONG Guihong,ZHANG Jingjing, YANG Xiaoping, LI Feng, CHEN Lijia, HE Chunlin, Influence of negative pulse bias on structure and properties of TiN-Cu composite films, Journal of Shenyang university of technology, 36(3), 275(2014)
9 (宋贵宏, 张晶晶, 杨肖平, 李 锋, 陈立佳, 贺春林, 脉冲负偏压对TiN-Cu复合膜结构与性能的影响, 沈阳工业大学学报, 36(3), 275(2014))
10 Z. G. Li, SD. Miyake, M. Kumagai, H. Saito, Y. Muramatsu,Hard nanocomposite Ti-Cu-N films prepared by d.c. reactive magnetron co-sputtering, Surface and Coatings Technology, 183, 62(2004)
11 Hyun S. Myung, Jeon G. Han, Jin H. Boo,Astudy on the synthesis and formation behavior of nanostructured TiN films by copper doping, Surface and Coatings Technology, 177/178, 404(2004)
12 SONG Guihong,ZHENG Jingdi, LIU Yue, SUN Chao, Influence of TiAl interlayer on TiAlN coating deposited by arc ion plating, Journal of Synthetic Crystals, 33(3), 422(2004)
12 (宋贵宏, 郑静地, 刘 越, 孙 超, TiAl过渡层对电弧离子镀沉积TiAlN膜层的影响, 人工晶体学报, 33(3), 422(2004))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.