Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (7): 481-489    DOI: 10.11901/1005.3093.2014.120
  本期目录 | 过刊浏览 |
316LN奥氏体不锈钢的高温拉伸断裂行为*
吴从风1,李时磊1,张海龙1,王西涛1(),王根启2
1. 北京科技大学新金属材料国家重点实验室 北京 100083
2. 烟台台海玛努尔核电设备股份有限公司 烟台 264003
On High Temperature Tensile Fracture Behavior of 316LN Austenitic Stainless Steel
Congfeng WU1,Shilei LI1,Hailong ZHANG1,Xitao WANG1,**(),Genqi WANG2
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2. Yantai Taihai Marnoir Nuclear Equipment Co. Ltd., Yantai 264003
引用本文:

吴从风,李时磊,张海龙,王西涛,王根启. 316LN奥氏体不锈钢的高温拉伸断裂行为*[J]. 材料研究学报, 2014, 28(7): 481-489.
Congfeng WU, Shilei LI, Hailong ZHANG, Xitao WANG, Genqi WANG. On High Temperature Tensile Fracture Behavior of 316LN Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2014, 28(7): 481-489.

全文: PDF(8282 KB)   HTML
摘要: 

用Gleeble 1500D热力模拟试验机研究了锻造态的AISI 316LN奥氏体不锈钢650-1300℃的热塑性及高温拉伸断裂行为, 应变速率为0.5 s-1。结果表明, 在650-1250℃温度范围内, 材料的断面收缩率先随着变形温度的升高而降低, 在850℃达到最低后开始大幅升高, 高于1000℃时都保持在85%以上。但是当温度升高到1300℃时, 由于晶粒尺寸急剧变大其晶界强度下降, 断面收缩率又急剧降低。用光学显微镜(OM)和扫描电镜(SEM)观察了试样的热变形区的组织变化和断口形貌, 发现材料在1000℃以上热变形时发生了动态再结晶。动态再结晶提高了材料塑性, 阻碍了裂纹的扩展。在断口附近裂纹产生的过程包括微裂纹的形核、长大和聚集且和晶界处富集的夹杂物有关。能谱分析表明, 这些夹杂物主要是球状的硫化物和不规则的氧化铝类夹杂物。

关键词 金属材料奥氏体不锈钢热塑性热拉伸动态再结晶断裂行为    
Abstract

Hot ductility, stress-strain behavior and high temperature tensile fracture behavior of wrought 316LN stainless steel were investigated. Hot tensile tests were carried out on a Gleeble 1500D thermal simulator system at a strain rate of 0.5 s-1 over the temperature range 650-1300℃. The percentage reduction of area (RA) decreased with the increasing deformation temperature over the range of 650-850℃, and then starting from 850℃, it began to increase dramatically with values over 85% above 1000℃. When the deformation temperature comes to 1300℃, RA decreased sharply as a result of the grain coarsening due to over-heating. With the help of optical microscopy, dynamic recrystallization (DRX) was observed for the steel deformed at temperature over 1000℃. The enhancement of ductility induced by DRX was considered to play an important role in inhibition of the crack propagation. The high temperature tensile failure process of 316LN includes the nucleation, growth, and aggregation of microscopic cavities. The SEM/EDS results show that the sulfide and alumina at grain boundaries may be responsible to the formation process of cracks.

Key wordsmetallic materials    austenitic stainless steel    hot ductility    hot tensile    dynamic recrystallization    fracture behavior
收稿日期: 2014-03-14     
基金资助:* 国家高技术研究发展计划2012AA03A507资助项目。
C N Si Mn Cr Mo Ni P S Fe
0.01 0.12 0.24 1.30 17.18 2.23 13.12 0.019 0.003 Bal.
表1  实验用316LN奥氏体不锈钢的化学成分
图1  316LN金相组织和晶粒尺寸统计
图2  316LN在不同变形温度下的真应力-真应变曲线
图3  316LN在不同温度热拉伸的组织变化
图4  316LN再结晶晶粒尺寸与变形温度的关系
图5  εt-εp与变形温度的关系
图6  0.5 s-1的应变速率下316LN的变形抗力和断面收缩率随变形温度的变化及热拉伸样的宏观断口形貌
图7  试样在1300℃拉伸断口附近组织
图8  316LN的高温拉伸特性曲线
图9  316LN在不同温度下热拉伸断口形貌
图10  316LN在不同温度下热拉伸样断口处韧窝内质点EDS分析
图11  316LN热拉伸断口附近微孔的形成过程
1 Wenhui Zhang,Shuhua Sun, Deli Zhao, Baozhong Wang, Zhenhua Wang, Wantang Fu, Hot deformation behavior of a Nb-containing 316LN stainless steel, Materials and Design, 32(8), 4173(2011)
2 A. A. Tavassoli,Assessment of austenitic stainless steels, Fusion Engineering and Design, 29, 371(1995)
3 H. Shaikh, T. Anita, R. K. Dayal, H. S. Khatak,Effect of metallurgical variables on the stress corrosion crack growth behaviour of AISI type 316LN stainless steel, Corrosion Science, 52(4), 1146(2010)
4 Zhang Xiuzhi,Zhang Yishuai, Li Yingjie,Liu Jiansheng, Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation, Materials Science and Engineering A, 559, 301(2013)
5 J. W. Simmons,Overview: high-nitrogen alloying of stainless steels, Materials Science and Engineering A, 207(2), 159(1996)
6 Frank Klannica,Gutti Rao, Reactor coolant loop seamless forged and formed pipe fabrication specification, APP-PL01-T1-001(2008)
7 SONG Shukang,LIU Zhiying, ZHENG Jianneng, DENG Lintao, CHEN Hongyu, The development of main pipe for the third-generation AP1000 nuclear power plant, Heavy Casting and Forging, 1, 1(2011)
7 (宋树康, 刘志颖, 郑建能, 邓林涛, 陈红宇, 第三代AP1000核电主管道的研制, 大型铸锻件, 1, 1(2011))
8 M. Yazdani, S. M. Abbasi, A. Momeni, A. Karimi Taheri,Hot ductility of a Fe-Ni-Co alloy in cast and wrought conditions, Materials and Design, 32(5), 2956(2011)
9 M. C. Mataya, E. R. Nilsson, E. L. Brown, G. Krauss,Hot working and recrystallization of as-cast 316L, Metallurgical and Materials Transactions A, 34(8), 1683(2003)
10 Jafari Meysam,Najafizadeh Abbas, Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel, Materials Science and Engineering A, 501(1-2), 16(2009)
11 Ying Han,Guiwu Liu, Dening Zou, Rong Liu, Guanjun Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Materials Science and Engineering A, 565, 342(2013)
12 T. Revaux, J. P. Bricout, J. Oudin,A new tensile testing procedure for predicting transverse cracking susceptibility of continuous casting slabs, Journal of Materials Engineering and Performance, 5(2), 260(1996)
13 LV Yan, Forging Forming Theory and Technology (Beijing, Mechanical Industry Press, 1991) p.46
13 (46)
14 REN Meng,LI Baohua, The mechanism and preventing method of cracking on the steel ingot, Heavy Casting and Forging, 3, 36(1992)
14 (任 猛, 李保华, 钢锭开裂的机理及防止方法, 大型铸锻件, 3, 36(1992))
15 CUI Yuexian, WANG Changli, Fracture Analysis of Metals (Harbin, Harbin Institute of Technology Press, 1998) p.39-40
15 (崔约贤, 王长利, 金属断口分析(哈尔滨, 哈尔滨工业大学出版社, 1998) p.39-40
16 ZHANG Yishuai,Analysis and process control of forging cracking for austenitic stainless steel 316LN, Master’s thesis, Taiyuan University of Technology (2011)
16 (张义帅,316LN不锈钢锻造裂纹分析及工艺控制, 硕士学位论文, 太原科技大学(2011))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.