Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 395-400    DOI: 10.11901/1005.3093.2013.788
  本期目录 | 过刊浏览 |
钛(IV)配合物催化合成Ti-P聚乳酸材料的亲水性、降解率和细胞毒性*
胡承波()
重庆文理学院 环境材料与修复技术重庆市重点实验室 重庆 402160
Hydrophilicity Degradability and Cell Toxicity of Ti-P Polylactide Paterial Synthesized by Titanium (IV) Complex as Catalyst
Chengbo HU()
Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160
引用本文:

胡承波. 钛(IV)配合物催化合成Ti-P聚乳酸材料的亲水性、降解率和细胞毒性*[J]. 材料研究学报, 2014, 28(5): 395-400.
Chengbo HU. Hydrophilicity Degradability and Cell Toxicity of Ti-P Polylactide Paterial Synthesized by Titanium (IV) Complex as Catalyst[J]. Chinese Journal of Materials Research, 2014, 28(5): 395-400.

全文: PDF(3617 KB)   HTML
摘要: 

以双(烷氧-亚胺芳氧)基钛(IV)配合物(BAIP-Ti(IV))为催化剂催化D, L-丙交酯开环聚合合成的Ti-P聚乳酸, 用静态水接触角、吸水率及降解实验考察其理化性能, 以小鼠颅顶前骨细胞(MC3T3-E1)考察其在材料表面的增值和黏附铺展情况。结果表明: Ti-P聚乳酸比Sn-P聚乳酸有较低的亲水性和较高的抗水解性; MC3T3-E1细胞在Ti-P聚乳酸材料表面显示出的较好的增值活力以及细胞黏附与铺展能力; 在Ti-P聚乳酸中残存的微量Ti(IV)金属配合物对MC3T3-E1细胞无细胞毒性, 不影响MC3T3-E1细胞在其材料表面上生长。

关键词 有机高分子材料配合物丙交酯聚乳酸降解生物相容性    
Abstract

Ti-P polylactide was synthesized by ring-opening polymerization (ROP) of D, L-lactide with bis-(alkoxy-imine-phenoxy) titanium (IV) complex as catalyst. The physico-chemical properties of the Ti-P material were investigated by measurements of contact angle, water absorption rate and degradability, while its biocompatibility to MC3T3-E1 cells, such as the proliferation, adhesion and spreading performance of murine preosteoblastic cells (MC3T3-E1) was also investigated. The results show that the hydrophilicity of Ti-P polylactide is weaker than Sn-P polylactide, inversely, its anti-hydrolysis ability is stronger. In contact with the Ti-P polylactide material, the MC3T3-E1 cells showed excellent activity in proliferation, adhesion and spreading. The rudimental Ti(IV) complex in the Ti-P polylactide exihibits non-toxicity to MC3T3-E1 cell and does not hamper the growth of MC3T3-E1 cells on the surface of the Ti-P polylactide material.

Key wordsorganic polymer materials    complex    lactide    polylactide    degradation    biocompatibility
收稿日期: 2013-08-25     
基金资助:* 重庆市自然科学基金cstc2013jcyjA50022 和重庆文理学院重点项目Z2013CH07。
Samples Contact angles (°) Water absorption rate (%)
Sn-P 73.8±0.92 (n=6) 2.03±0.26 (n=6)
Ti-P 82.2±0.71 (n=6) 1.45±0.42 (n=6)
表1  样品的静态水接触角和24 h的吸水率
图1  两种材料表面静态水接触角 (A: Sn-P, B: Ti-P)
图2  材料降解失重率随时间的变化(n=6)
图3  在材料降解过程中pH值的变化(n=6)
图4  MTT检测MC3T3-E1细胞在不同材料上的增殖情况(490 nm)
图5  培养不同时间的MC3T3-E1细胞在Glass(A)、Sn-P(B)以及Ti-P(C)表面的激光共聚焦成像 (A1, B1, C1)24 h; (A2, B2, C2)48h
1 Z. Zhong, P. J. Dijkstra, J. Feijen,Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures, Journal of American Chemical Society, 125(37), 11291(2003)
2 H. R. Kricheldorf, I. Kreiser-Saunders, C. Boettcherl,Polylactones: 31. Sn(II) octoate-initiated polymerization of L-Lactide: a mechanistic study, Polymer, 36(6), 1253(1995)
3 C. P. Radano, G. L. Baker, M. R. Smith,Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide, Journal of American Chemical Society, 122(7), 1552(2000)
4 A. John, V. Katiyar, K. Pang, M. M. Shaikh, H. Nanavati, P. Ghosh,Ni(II) and Cu(II) complexes of phenoxy-ketimine ligands: synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-Lactide, Polyhedron, 26(15), 4033(2007)
5 A. Amgoune, C. M. Thomas, T. Roisnel,Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligand: combining high activity, productivity, andselectivity, Chemistry-A European Journal, 12(1), 169(2005)
6 N. Nomura, R. Ishii, Y. Yamamoto, T. Kondo,Stereoselective ring-opening polymeization of a racemic Lactide by using achiral salen- and homosalen-aluminum complexes, Chemistry-A European Journal, 13(16), 4433(2007)
7 D. J. Darensbourg, O. Karroonnirun,Stereoselective ring-opening polymerization of rac-Lactides catalyzed by chiral and achiral aluminum Half-Salen complexes, Organometallics, 29(21), 5627(2010)
8 H. Ma, J. Okuda,Kinetic and Mechanism of L-lactide polymerization by rare earth metal silylamido complexes: effect of alcohol addition, Macromolecules, 38(7), 2665(2005)
9 M. H. Chisholm,Catalytic formation of cyclic-esters and depsipeptides and chemical amplification by complexation with sodium ions, Journal of Organometallic Chemistry, 693(5), 808(2008)
10 C. Hu, Y. Wang, H. Xiang, Y. Fu, C. Fu, J. Sun, Y. Xiang, C. Ruan, X. Li,Synthesis and characterization of Ti(Tbse)2 and its application as a catalyst for ROP of rac-Lactide, Polymer International, 61(10), 1564(2012)
11 C. Hu, Y. Fu, H. Xiang, Y.Fu, J.Sun, M.Deng, X. Xiang,The Novel [(dME)2(HIM)P]2Ti (IV) Complex: synthesize, characterization and its utility in ROP of D, L-Lactide, Polymer Bulletin, 69(5), 511(2012)
12 HU Chengbo,FU Ya, XIANG Hongzhao, SUN Jiaoxia, RUAN Changshun, LI Xiang, XIANG Yan, PENG Qin, WANG Yuanliang, ROP of D, L-Lactide catalyzed by bis(alkoxy-imine-phenoxy) titanium(IV) complex: kinetic and mechanism, Acta Chimica Sinica, 69(21), 2574(2011)
12 (胡承波, 傅 亚, 向鸿照, 孙娇霞, 阮长顺, 李 香, 向 燕, 彭 琴, 王远亮, 双(烷氧-亚胺芳氧)基钛(IV)配合物催化D, L-丙交酯开环聚合、动力学及机理, 69(21), 2574(2011))
13 HU Chengbo, XU Qiang, WANG Yuanliang, ZHENG Shiyuan, Microstructure analysis of Ti-P polylactide synthesized by titanium(IV) complex as catalyst, 21(4), 18(2013)
13 (胡承波, 徐 强, 王远亮, 郑士远, 钛(IV)配合物催化合成TI-P聚乳酸材料微观结构分析, 21(4), 18(2013))
14 S. Kaihara, S. Matsumura, A. G. Mikos, J. P. Fisher,Synthesis of poly(L-lactide) and polyglycolide by Ring-opening polymerization, Nature protocols, 2(11), 2767(2007)
15 K. B. Vartanian, S. J. Kirkpatrick, S. R. Hanson, M. T. Hinds,Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces, Biochemical and Biophysical Research Communications, 371(4), 787(2008)
16 CAI Qing,BEI Jianzhong, WANG Shenguo, WANG Changyong, FAN Ming, LIU Shuang, ZHAO Qiang, Study on the biocompatibility and degradation behavior of polyl( l-lactide-co- glycolide) in vitro and in vivo, Journal of Functional Polymers, 13(3), 249(2000)
16 (蔡 晴, 贝建中, 王身国, 王常勇, 范 明, 刘 爽, 赵 强, 乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究, 功能高分子学报, 13(3), 249(2000))
17 X. Wu, N. Wang,Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation, Journal of Biomaterials Science-Polymer Edition, 12(1), 21(2001)
[1] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 侯语桐, 李鑫, 李大伟, 魏取福. 金属有机框架固定化漆酶的制备及其对邻苯二酚的降解[J]. 材料研究学报, 2022, 36(10): 793-800.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[11] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[12] 令狐昌开, 李小龙, 罗筑, 杨乐, 夏啸松. 亚磷酸三苯酯调控聚乳酸/氯化铁共混体系的降解行为和性能[J]. 材料研究学报, 2021, 35(8): 632-640.
[13] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[14] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[15] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.