Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 139-143    DOI: 10.11901/1005.3093.2013.361
  本期目录 | 过刊浏览 |
不同晶型结构纳米ZrO2的稳定化制备*
管昊,贡湘君,刘荣(),杨柳
南京师范大学地理科学学院 南京 210023
Preparation of Stable Nanosized ZrO2 Particles with Different Crystallographic Structures
Hao GUAN,Xiangjun GONG,Rong LIU(),Liu YANG
School of Geography Science, Nanjing Normal University, Nanjing 210023
引用本文:

管昊,贡湘君,刘荣,杨柳. 不同晶型结构纳米ZrO2的稳定化制备*[J]. 材料研究学报, 2014, 28(2): 139-143.
Hao GUAN, Xiangjun GONG, Rong LIU, Liu YANG. Preparation of Stable Nanosized ZrO2 Particles with Different Crystallographic Structures[J]. Chinese Journal of Materials Research, 2014, 28(2): 139-143.

全文: PDF(2331 KB)   HTML
摘要: 

采用共沉淀法制备了室温稳定存在的不同晶型纳米ZrO2粉体, 用X射线衍射(XRD)、激光拉曼散射(Raman)、N2物理吸附、透射电镜(TEM)和动态光散射技术(DLS)等手段对其晶型结构、晶粒尺寸、比表面积和粒度分布进行了表征, 研究了煅烧温度和改性剂掺杂量对晶型结构的影响。结果表明, 无掺杂前驱体在850℃煅烧可得到m-ZrO2纳米粉体, 比表面积为35.17 m2/g, 晶粒尺寸为51.3nm; 煅烧温度为600℃, Y2O3掺杂量为4.5%(摩尔分数)时纳米粉体的晶型结构为t-ZrO2, 比表面积为39.01 m2/g, 晶粒尺寸为19.2nm; 煅烧温度为600℃, Y2O3掺杂量为8.5%时可得到比表面积为46.53 m2/g, 晶粒尺寸为12.7 nm的c-ZrO2纳米粉体。

关键词 无机非金属材料纳米ZrO2晶型结构掺杂改性煅烧温度    
Abstract

The ambient-temperature stable nanosized ZrO2 particles with different crystallographic structures were prepared by codeposition method. Their crystallographic structures, grain size, specific surface area and size distribution were characterized by powder X-ray diffraction (XRD), laser raman spectroscopy, N2 physical adsorption, transmission electron microscopy (TEM) and dynamic light scattering (DLS) respectively. Therewith the effect of preparation temperature and modifier doping on the crystallographic structures of particles was investigated. The results show that the nanosized ZrO2 powders without Y2O3 doping calcined at 850℃ are monoclinic ZrO2 with an average grain size 51.3 nm and a specific surface area 35.17 m2/g; the powders doped with 4.5% Y2O3 (molar fraction) and calcined at 600℃ are tetragonal ZrO2 with a specific surface area 39.01 m2/g and an average grain size 19.2 nm; the powders doped with 8.5% Y2O3 (molar fraction) and calcined at 600℃ are cubic ZrO2 with a specific surface area 46.53 m2/g and an average grain size 12.7 nm.

Key wordsKEY    WORDS    inorganic non-metallic materials    nano-ZrO2    crystallographic structure    doping    calcinations temperature
收稿日期: 2013-05-30     
基金资助:* 国家“863 计划”项目基金2013AA065401 资助项目。
作者简介:

本文联系人: 刘 荣

图1  不同掺杂量纳米ZrO2粉体的XRD谱图
Samples Content/% Temperature/℃ Crystallinity D(average)/nm
#1 0 200 / /
#2 0 400 / /
#3 0 600 100% 15.5
#4 0 850 100% 51.3
#5 1.5 400 69.1% 14.6
#6 1.5 600 100% 16.9
#7 1.5 850 100% 39.1
#8 4.5 400 75.4% 14.8
#9 4.5 600 100% 19.2
#10 4.5 850 100% 40.3
#11 8.5 400 88.3% 11.1
#12 8.5 600 100% 12.7
#13 8.5 850 100% 25.3
表1  不同煅烧温度及掺杂量下的晶粒尺寸及结晶度
图2  不同掺杂量纳米ZrO2粉体Raman光谱图
Samples Content/% Temperature/℃ Crystal form Surface area/m2g-1 Pore volume/ccg-1 Pore size/nm
#1 0 850 m-ZrO2 35.17 0.1842 10.5
#2 4.5 600 t-ZrO2 39.01 0.0974 5.00
#3 4.5 850 t-ZrO2 18.61 0.0803 8.63
#4 8.5 600 c-ZrO2 46.53 0.0658 2.83
#5 8.5 850 c-ZrO2 10.16 0.0272 5.35
表2  纳米氧化锆粉体的比表面积、孔容和平均孔径
图3  不同晶型结构纳米ZrO2粉体TEM照片
图4  不同晶型结构纳米ZrO2粉体的粒度分布图
1 P. D. L. Mercera, J. G. Ommen, E. B. M. Doesburg,Stabilized tetragonal zirconium oxide as a support for catalysts Evolution of the texture and structure on calcination in static air, Applied catalysis, 78(1), 79(1991)
2 J. B. Miller, S. E. Rankin, E. I. Ko,Strategies in controlling the homogeneity of zirconia-silica aerogels: effect of preparation on textural and catalytic properties, Journal of Catalysis, 148(2), 673(1994)
3 P. Moles,Zirconium compounds in catalysis: the current position, Applied Catalysis A: General, 87(1), N2(1992)
4 S. Block, J. A. H. Jornada, G. J. Piermarini, Pressure-temperature phase diagram of zirconia, Journal of the American Ceramic Society, 68(9), 497(1985)
5 N. Takahashi, A. Suda, I. Hachisuka,Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides, Applied catalysis. B, Environmental, 72(1-2), 187(2007)
6 R. Moreno-Tost, E. R. Castellón, A. Jiménez-López,Cobalt–iridium impregnated zirconium-doped mesoporous silica as catalysts for the selective catalytic reduction of NO with ammonia, Journal of Molecular Catalysis A: Chemical, 248(1), 126(2006)
7 B. M. Reddy, A. Khan, P. Lakshmanan,Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalysts by XRD, Raman, and HREM techniques, The Journal of Physical Chemistry B, 109(8), 3355(2005)
8 M. Yang, D. J. Han, G. F. Li,Characterization of nano Ni/MgO-ZrO2 catalysts, Advanced Materials Research, 629, 396(2013)
9 C. Vedhi, R. R. Muthuchudarkodi,Synthesis and characterization of nano CuO-ZrO2 mixed oxide, Advanced Materials Research, 678, 50(2013)
10 P. Hartmann, T. Brezesinski, J. Sann,Defect chemistry of oxide nano-materials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2, ACS nano, (2013)
11 Y. C. Lin, D. Gan, P. Shen,Phase Transformation of ZrO2 in MnZn-ferrite under magnetic field, Journal of the American Ceramic Society, 79(2), 559(1996)
12 R. C.Garvie, M. F.Goss,Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals, Journal of materials science, 21(4), 1253(1986)
13 DUAN Guorong,YANG Xujie, LU Lude, WANG Xin, Preparation of single-phase nanosized zirconia by sol-gel and distillation method, Journal of Synthetic Crystals, 35(2), 327(2006)
13 (段国荣, 杨绪杰, 陆路德, 溶胶-凝胶/共沸蒸馏法制备单相氧化锆超细粉, 人工晶体学报, 35(2), 327(2006))
14 SUN Jing,GAO Lian, GUO Jingkun, Effect of dispersant on the measurement of particle size distribution of nano size Y-TZP, Journal of Inorganic Materials, 14(3), 465(1999)
14 (孙 静, 高 濂, 郭景坤, 分散剂用量对几种纳米氧化锆粉体尺寸表征的影响, 无机材料学报, 14(3), 465(1999))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.