Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (2): 212-218    
  研究报告 本期目录 | 过刊浏览 |
冷喷涂Cu-Cu2O涂层在海水中的电化学行为
丁锐1, 2 李相波1 王佳2, 3 许立坤1
1. 海洋腐蚀与防护重点实验室 中船重工七二五所 青岛 266101
2. 中国海洋大学化学化工学院 青岛 266100;
3. 金属腐蚀与防护国家重点实验室 沈阳 110016
Electrochemical Activities of Cold Spray Cu-Cu2O Coating in Seawater
DING Rui1, 2* LI Xiangbo1 WANG Jia2, 3 XU Likun1
1. Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute(LSRMI), Qingdao 266101
2. Ocean University of China, Qingdao 266003
3. State Key Laboratory for Corrosion and Protection, Shenyang 110016,
引用本文:

丁锐 李相波, 王佳, 许立坤. 冷喷涂Cu-Cu2O涂层在海水中的电化学行为[J]. 材料研究学报, 2013, 27(2): 212-218.
. Electrochemical Activities of Cold Spray Cu-Cu2O Coating in Seawater[J]. Chinese Journal of Materials Research, 2013, 27(2): 212-218.

全文: PDF(829 KB)  
摘要: 用冷喷涂技术制备Cu-Cu2O涂层, 研究了其在不同海水环境下的极化行为, 并建立了涂层的腐蚀过程数学模型。结果表明: 在浸泡的初期Cu2O促进了涂层的局部腐蚀; 随着浸泡时间的增加局部腐蚀产物进一步促进了表面氧化膜的形成; 在非搅拌的静态环境下, 涂层的腐蚀受CuCl2-扩散的控制; Cl-促进了涂层的腐蚀, 阻碍氧化膜的形成, 且Cl-对CuCl的络合是Cl-浓度的一级反应; 在CuCl向Cu2O转变的过程中产生H+, 使电极表面附近溶液的pH值降低, 阻碍氧化膜的形成和降低耐久性, 而在溶液中加入Na2B4O7-H3BO4缓冲体系, 能有效地提高氧化膜的击破电位。根据本文提出的反应过程数学模型进行计算的结果, 与实验结果具有很好的相符性。
关键词 材料失效与保护冷喷涂电化学腐蚀数学模型    
Abstract: The Cu-Cu2O coating was prepared by Cold Spray Technology, polarization behavior of the coating in seawater was investigated and the corresponding mathematical model was established. The esults show that Cu2O promoted localized corrosion in the beginning and with the increase of the soaking time local corrosion products can promote film-forming. The corrosion of coating was controlled by CuCl2- diffusion in a static environment. Cl- promoted the corrosion of coating and hindered film-forming. Cl - CuCl complex is first order reaction of the Cl - concentration. H+ was produced in the transform process from CuCl to Cu2O, which reduced the pH value of solution nearby electrode surface and affected the forming and durability of the oxide film adversely. Existence of buffer solution can increase break potential of oxide film effectively. Mathematical model was established based on reaction course coincides with experimental results well.
Key wordsmaterials failure and protection    cold spray    electrochemical corrosion    mathematical model
    
ZTFLH:  TB304  
1 Horne R A, Marine chemistry: The structure of water and the chemistry of Hydrosphere (New York, Wiley-Interscience, 1969)
2 HUA Shaochun, WANG Hangong, WANG Liuying, ZHANG Wu, LIU Gu, Development on thermal spray technology, Heat Treatment of Metals, 33(5), 82(2008)
(华绍春, 王汉功, 汪刘应, 张 武, 刘 顾, 热喷涂技术的研究进展, 金属热处理, 33(5), 82(2008))
3 WU Tao, ZHU Liu, LI Jian, WANG Youwen, Status and development of thermal spray technology, Heat Treament of Metals Abroad, 26(4), 2(2005)
(吴 涛, 朱 流, 郦 剑, 王幼文, 热喷涂技术现状与发展, 国外金属热处理, 26(4), 2(2005)
4 A. P. Alkimov, V. F. Kosarev, A. N. Papyrin, A method of cold gas dynamic deposition, Dokl Akad Nauk SSSR, 315(5), 1062(1990)
5 R. E. Blose, T. J. Roemer, Automated cold spray system: description of equipment and perfor mance data, Proceedings of the international thermal spray conference (Orlando, ASM, 2003) p.103
6 Karthikeyan J, Kay CM, Cold spray technology: an industrial perspective, Proceedings of the international thermal spray conference (Orlando, ASM, 2003) p.117
7 MA Shining, ZHANG Zhanping, Development and Future Trends of Antifouling Coatings for Ship, China Surface Engineering, 22(6), 19(2009)
(马世宁, 张占平, 舰船防污涂层技术的发展现状与趋势, 中国表面工程, 22(6), 19(2009))
8 A. P. Alkimov, V. F. Kosarev, A. N. Papyrin, A method of cold gas dynamic deposition, Dokl Akad Nauk SSSR, 315(5), 1062(1990)
9 DING Rui, LI Xiangbo, WANG Jia, XU Likun, Research progress on long-term antifouling coating of ships, Corrosion Science and Protection Technology, 24(3), 173(2012)
(丁 锐, 李相波, 王 佳, 许立坤. 舰船长效防污涂层研究进展, 腐蚀科学与防护技术, 24(3), 173(2012))
10 DING Rui, LI Xiangbo, WANG Jia, XU Likun, Study on deposition characteristics of cold spray produced Cu-Cu2O coating, Materials Review, 26(10), 13(2012)
(丁 锐, 李相波, 王 佳, 许立坤, 冷喷涂Cu-Cu2O涂层的沉积特性研究, 材料导报, 26(10), 13(2012))
11 Jutta Elguindi, Stuart Moffitt, Henrik Hasman, Cassandra Andrade, Srini Raghavan, Christopher Rensing, Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria, Applied Microbial and Cell Physiology, 89, 1963(2011)
12 K. F. Khaled, Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements, Materials Chemistry and Physics, 125, 427(2011)
13 J. Chen, Z.?Qin, D. W. Shoesmith, Rate controlling reactions for copper corrosion in anaerobic aqueous sulphide solutions, Corrosion Engineering, Science and Technology, 46, 138(2011)
14 Ji Eun Lee, Hyun Dong Lee, Gi Eun Kim, The effect of corrosion inhibitor on corrosion control of copper pipe and green water problem, Environmental Engineering Research, 17, 17(2012)
15 M. M. Antonijevic, M. B. Petrovic, Copper corrosion inhibitors: A review, Int. J. Electrochem. Sci. 3, 1(2008)
16 M. Yeganeh, M. Saremi. Corrosion behaviour of nanostructured copper thin films in comparison with copper sheet in drinking water, Micro & Nano Letters, 6, 26(2011)
17 XU Haibo, FU Hongtian, ZHANG Guangyu, CHENG Guangzhang, Electrochemical study on dissolution mechanism of copper anode in the active region, Journal of Chinese Society For Corrosion and Protection, 19(1), 27(1999)
(徐海波, 付洪田, 赵广宇, 陈光章, 铜阳极活性区溶解机制的电化学研究, 中国腐蚀与防护学报, 19(1), 27(1999))
18 M. Fleischmann, I. R. Hill, G. Mengoli, M. M. Musiani, J. Akhavan Electrochim, Acta, 30(7), 879(1985)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.