Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (6): 667-672    
  研究论文 本期目录 | 过刊浏览 |
硅酸盐无机胶黏剂的粘结和绝缘性能
赵宇航, 段德莉, 张月来, 王鹏, 李曙
中国科学院金属研究所 沈阳 110016
Bonding and Insulating Properties of Silicate Inorganic Adhesive
ZHAO Yuhang, DUAN Deli, ZHANG Yuelai, WANG Peng, LI Shu
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

赵宇航 段德莉 张月来 王鹏 李曙. 硅酸盐无机胶黏剂的粘结和绝缘性能[J]. 材料研究学报, 2012, 26(6): 667-672.
ZHAO Yuhang DUAN Deli ZHANG Yuelai WANG Peng LI Shu. Bonding and Insulating Properties of Silicate Inorganic Adhesive[J]. Chinese Journal of Materials Research, 2012, 26(6): 667-672.

全文: PDF(1061 KB)  
摘要: 

制备了不同成分配比的耐高温硅酸盐胶黏剂, 用体视显微镜、扫描电镜观察胶体的形貌, 用低载荷拉伸试验机测试其粘结力, 并分析试样在高温条件下及饱和水蒸汽环境中的绝缘性能。结果表明:随着硅酸盐胶黏剂的液相组分中SiO2/M2O模数比变小、固相粉末粒度分布范围变宽及液固相质量比的适当调节, 其粘结强度均有较大的提升;胶黏剂绝缘的性能随着温度的升高而恶化并存在绝缘电阻大幅下降的临界温度, 碱金属离子含量的增加降低其临界温度并加快其下降趋势;在饱和水蒸气环境中胶黏剂绝缘性能普遍降低, 对固化后的胶体进行高温热处理使其绝缘性能有较大提升, 但碱金属离子含量和胶体微观裂纹会降低其绝缘性能。

关键词 无机非金属材料硅酸盐胶黏剂粘结强度绝缘性能模数比    
Abstract

For studying the bonding and insulating properties of inorganic adhesive, different compositions of silicate adhesive samples were prepared in this paper. The morphologies of the solidified adhesives were observed by the microscope and SEM. The bonding force was determined by low-loaded tensile testing machine and the insulation resistance of sample was measured under various temperature and saturated vapor environment. The results indicated that the bonding-strength of sample is greatly improved by the decrescent SiO2/M2O modulus ratio of liquid composition, the wide sizes and distributions of the solid powders as well as the proper ratio between solid and liquid component. The insulating property of sample deteriorates with temperature rising, and sample with more content of alkali metal ion shows lower critical temperature and quicker downtrend. Sample’s insulating resistance obviously decreased when it was under saturated vapor environment, which might be greatly improved by heat treating, but it can also deteriorate by the increase of both alkali ion content and micro crack of adhesive.

Key wordsinorganic non-metallic materials    silicate adhesive    bonding strength    insulating property    Modulus ratio
收稿日期: 2012-08-30     
ZTFLH:  TB321  

1 J. G. Vail, Soluble Silicate in Industry (New York ,Little & Ives, 1982) p.175

2 R. D. Shoup, Colloid and interface science (New York, Academic Press, 1976) p.97

3 TIAN Jianzhong, The developing state of inorganic adhesive, Fine Chemical Industry, 6(3), 15(1989)

(田建中, 无机胶黏剂的发展状况, 精细化工,  6(3), 15(1989))

4 A. Pass and M. J. F. Meason, Alkali silicates in surface coatings, Oil & Colour Chemtsts Association Journal, 148, 897(1965)

5 TIAN Hebao, ZHANG Chaocan, WU Lili, Stability of mixed silica sol and potassium (sodium) silicate in one - component coating, Paint and Coatings Industry, 40(6), 13(2010)

(田和保, 张超灿, 吴立力, 硅溶胶与硅酸钾(钠)混合物体系单组分涂料的稳定性, 涂料工业, 40(6), 13(2010))

6 TANG Xinghua, RAO Houzheng, The Response for Technic of Adhesive Production (Beijing, Chemical Industry Press, 2004) p.338

(唐星花, 饶厚曾,  胶黏剂生产技术问答 (北京, 化学工业出版社, 2004) p.338)

7 LI Zhidong, LI Guangyu, YU Min, The Technical Directory of Modern Adhesive (Beijing, New Age Press, 2001) p.678

(李子东, 李广宇, 于敏,  现代胶黏技术手册  (北京, 新时代出版社, 2001) p.678)

8 Kenichi Okubi, Akira Kitajima, Inorganic adhesive composition, United stated patent, number: 5,332,432(1994) 

9 WANG Shugen, ZHAO Xiuzhi, The electric conduction of mineral and solid insulated materials, The Protection and Utilize of Mineral, (2), 39(1991)

(王树根, 赵修志, 矿物的导电性和固体绝缘材料, 矿产保护与利用, (2), 39(1991))

10 J.A.Voorthuyzen., K.Keskin, Investigation of the surface conductivity of silicon dioxide and methods to reduce it, Surface Science, 187, 201(1987)

11 ZHANG Yulong, WANG Huayin, The Modified Technic of Adhesive (Beijing, China Machine Industry Press, 2006) p.337

(张玉龙、王化银,  胶黏剂改性技术  (北京, 机械工业出版社, 2006) p.337)

12 K. Haufe, S.R. Morrison, Adsorption (Berlin, De Gruyter, 1974) p.13


[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.