Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 331-336    
  研究论文 本期目录 | 过刊浏览 |
两性聚苯硫醚的制备和性能
肖慧, 陶蓉, 李瑞海
四川大学高分子科学与工程学院 成都 610065
Synthesis and Properties of a Ampholytic Polyphenylene Sulfide (PPS)
XIAO Hui, TAO Rong, LI Ruihai
Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065
引用本文:

肖慧 陶蓉 李瑞海. 两性聚苯硫醚的制备和性能[J]. 材料研究学报, 2012, 26(3): 331-336.
, , . Synthesis and Properties of a Ampholytic Polyphenylene Sulfide (PPS)[J]. Chin J Mater Res, 2012, 26(3): 331-336.

全文: PDF(952 KB)  
摘要: 通过对磺化聚苯硫醚(P--SO3)的溴化、季铵基和叔铵基的取代反应, 制备了两性聚苯硫醚(P--SO3--TMA和P--SO3--DMA)。测试了两性聚苯硫醚的溶解性、比浓黏度、特性粘数和热稳定性等性能, 研究了几种关键因素对这些性能的影响。结果表明: 通过溴化和取代反应, 在磺化聚苯硫醚分子链上引入极性基团(季铵基和叔铵基)增强了分子链极性, 使两性聚苯硫醚能溶解在极性较大的溶剂中, 使P--SO3--TMA和P--SO3--DMA的比浓黏度随着水溶液pH值的增加大致呈上升趋势;水溶液的稀释使分子链上磺酸基与季铵基或叔铵基之间的相互吸引力减弱, 构象变得疏松, 从而使比浓黏度增大;受阳离子影响的大小排序为: NH+4+++, Mg2+2+, 受阴离子影响的大小排序为Br---;在纯水中, 两性聚苯硫醚表现出一种比磺化聚苯硫醚稳定的剪切速率。在饱和食盐水中, 两性聚苯硫醚的黏度随着剪切速率的增大迅速降低。耐温性较磺化聚苯硫醚也得到提高。
关键词 有机高分子材料两性聚苯硫醚比浓黏度水溶性聚合物流变性能    
Abstract:Ampholytic polyphenylene sulfide (P–SO3–TMA and P–SO3–DMA) was prepared from sulfonated polyphenylene sulfide (P–SO3) by bromination, followed by the substitution of bromine by quaternary ammonium group and tertiary amine group. The properties of ampholytic polyphenylene sulfide, such as dissolubility, reduced viscosity, intrinsic viscosity, rheological behavior and thermostability, were investigated, and the effects of key factors on performance were studied. The results showed that polar groups on the chain of sulphonated PPS through bromination and the substitution of bromine by quaternary ammonium group and tertiary amine group, make ampholytic PPS soluble in polarity solvent. The viscosities of P–SO3–TMA and P–SO3–DMA have a increasing trend with raising pH. Aqueous solution diluted make mutual attraction between sulfonic acid group and quaternary ammonium group or tertiary amine group weakened, and the conformation becomes loose, leading to reduced viscosity increasing. The ability of monovalent and divalent catonic charges influencing the viscosity of ampholytic polyphenylene sulfide obeys the following sequence: NH4+
Key wordsorganic polymer materials    ampholytic polyphenylene sulfide    reduced viscosity    aqueous solution polymer    rheological behavior
收稿日期: 2011-12-01     
ZTFLH: 

TB324

 
1 YANG Jie, YAN Wenxue, Military new material-polyphenylene sulfide (PPS)(1), Ordnance Material Science and Engineering, 29(5), 27(2006)

(杨 杰, 闫文学, 军工新材料--聚苯硫醚(PPS)介绍之一, 兵器材料科学与工程,   29(5), 27(2006))

2 ZHANG Chao, XU Xijun, PPS production and market applications, Gansu Oil and Chemical Industry, 21(4), 42(2007)

(张 朝, 许锡均, 聚苯硫醚的生产及市场应用, 甘肃石油和化工,  21(4), 42(2007))

3 S.E.Kudaibergenov, Recent advances in the study of synthetic polyampholytes in solutions, Adv. Polym. Sci., 114, 115(1999)

4 B.L.Andrew, L.M.Charles, Synthesis and solution properties of zwitterionic polymers, Chem. Rev., 102, 4177(2002)

5 G.E.Ryan, L.M.Charles, Electrolyte– and pH–responsive polyampholytes with potential as viscosity–control agents in enhanced petroleum recovery, J. Appl. Polym. Sci., 104, 2812(2007)

6 F.Q.Xuan, J.S.Liu, Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective, Polym Int., 58, 1350(2009)

7 S.Kudaibergenov, W.Jaeger, A.Laschewsky, Polymeric betaines: synthesis, characterization, and application, Adv. Polym. Sci., 201, 157(2006)

8 X.X.Cheng, X.F.Zhang, J.S.Liu, T.W.Xu, Novel approaches for the preparation of silica–based zwitterionic hybrid copolymers, European Polymer Journal, 44, 918(2008)

9 S.A.Ali, A.Rasheed, Synthesis and solution properties of a betaine–sulfur dioxide polyampholyte, Polymer, 40, 6849(1999)

10 W.F.Lee, G.Y.Huang, Poly(sulfobetaine)s and corresponding cationic polymers:5.Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide–maleic anhydride copolymer, Polymer, 37, 4389(1996)

11 N.Stavrouli, T.Aubry, C.Tsitsilianis, Rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels: A comparative study, Polymer, 49, 1249(2008)

12 J.F.Berret, Y.Serero, B.Winkelman, D.Calvet, A.Collet, M.Viguier, Nonlinear rheology of telechelic polymer networks, J Rheol., 45, 477(2001)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.