Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 327-330    
  研究论文 本期目录 | 过刊浏览 |
添加剂DMI对PCPDTBT:PC61BM聚合物薄膜性能的影响
王爱芬
杭州电子科技大学理学院 杭州 310012
Film-forming Additives Effect on Photoelectric Properties of PCPDTB : TPC61BM System
WANG Aifen
School of Science, Hangzhou Dianzi University, Hangzhou 310012
引用本文:

王爱芬. 添加剂DMI对PCPDTBT:PC61BM聚合物薄膜性能的影响[J]. 材料研究学报, 2012, 26(3): 327-330.
. Film-forming Additives Effect on Photoelectric Properties of PCPDTB : TPC61BM System[J]. Chin J Mater Res, 2012, 26(3): 327-330.

全文: PDF(669 KB)  
摘要: 制备ITO/PEDOT : PSS/PCPDTBT : PC61BM聚合物薄膜, 研究了成膜添加剂DMI对ITO/PEDOT : PSS/PCPDTBT : PCBM/Al的聚合物薄膜性能的影响。结果表明, 成膜添加剂DMI使PCPDTBT : PCBM光敏层的吸收峰红移, 所制备出的太阳能电池的性能得到大幅度提高。DMI使薄膜中产生纳米尺度的两相分离, 增大了给体与受体间的界面接触, 提高了光生激子的分离效率, 增大了电子的迁移率和电极收集载流子的效率,从而提高了器件的性能。在强度为100 mW·cm-2的光照下, 太阳能电池的填充因子FF为0.38,能量转换效率η为2.64\%, 开路电压Voc为0.66 V, 短路电流密度Jsc为10.42 mA·cm-2
关键词 有机高分子材料光电性能成膜添加剂光敏层    
Abstract:The thin film of ITO/PEDOT : PSS/PCPDTBT : PC61BM were fabricated and the effects of film-forming additives on the photoelectric properties of PCPDTBT : PC61BM were investigated. The results show that the film-forming additives results to a red shift of the absorption peak of PCPDTBTPC61BM active layer, substantially improvement of the performance of the solar cell. The existence of film-forming additives can lead to a nanoscale phase separation and increase of the contact interface between the donor and acceptor. The efficiency of photoinduced exciton separation, the carrier mobility and electrode collection charge carrier efficiency can be increased, thereby the device performances can be significantly improved by film-forming additives. Open circuit voltage of 0.66 V, short circuit current density of 10.42 mA·cm−2, fill factor of 0.38 and power conversion efficiency (PCE) of 2.64% were achieved under the condition of 100 mW·cm−2 air-mass 1.5 solar simulator illumination.
Key wordsorganic polymer materials    photoelectric properties    film-forming additives    activelayer
收稿日期: 2012-03-02     
ZTFLH: 

O484

 
基金资助:

浙江省自然科学基金Y6100273资助项目。

1 H.Hoppe, N.S.Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry, 16, 45(2006)

2 D.Muhlbacher, M.Scharber, M.Morana, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, High photovoltaic performance of a low-bandgappolymer, Advanced Materials, 18, 2884(2006)

3 M.Morana, M.Wegscheider, A.Bonanni, N.Kopidakis, S.E.Shaheen, M.Scharber, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, Bipolar charge transport in PCPDTBT-PCBM

bulk-heterojunctions for photovoltaic applica tions, Advanced Functional Materials, 18, 1757(2008)

4 X.N.Yang, J.Loos, S.C.Veenstra, Nanoscale morphology of high-performance polymer solar cells, Nano Letters, 5, 579(2005)

5 W.L.Ma, C.Y.Yang, X.Gong, K.Lee, A.J.Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617(2005)

6 G.Li, V.Shrotriya, J.S.Huang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4, 864(2005)

7 G.Li, Y.Yao, H.Yang, V.Shrotriya, G.Yang, Y.Yang, }Solvent annealing~effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater., 17, 1636(2007)

8 Zhao Y, Xie ZY, Qu Y, Geng YH,Wang LX, Solvent-vapor treatment induced performance enhancement of poly(3–hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells, Appl Phys Lett., 90, 043504(2005)

9 D.Muhlbacher, M.Scharber, M.Morana, High photovoltaic performance of a low-bandgap polymer, Advanced Materials, 18, 2884(2006)

10 F.C.Chen, H.C.Tseng, C.J.Ko, Solvent mixtures for improving device efficiency of polymer photovoltaic devices, Appl. Phys. Lett., 92, 103316(2008)

11 J.Peet, C.Soci, R.C.Coffin, T.Q.Nguyen, A.Mikhailovsky, D.Moses, G.C.Bazan, Method for increasing the photoconductive response in conjugated polymer/fullerene composites, Appl. Phys. Lett., 89, 252105(2006)

12 J.Peet, J.Y.Kim, N.E.Coates, W.L.Ma, D.Moses, A.J.Heeger, G.C.Bazan, Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6, 497(2007)

13 N.E.Coates, I.W.Hwang, J.Peet, G.C.Bazan, D.Moses, A.J.Heeger, 1,8-octanedithiol as a processing additive for bulk heterojunction materials: Enhanced photoconductive response, Appl. Phys. Lett., 93, 072105(2008)

14 Y.Yao, J.H.Hou, Z.Xu, G.Li, Y.Yang, Effect of solvent mixture on the nanoscale phase separation in polymer solar cells, Advanced Functional Materials, 18, 1783(2008)

15 W.Z Cai, X.Gong, Y.Cao, Polymer solar cells:Recent development and possible routes for improvement in the performance, Solar Energy Materials & Solar Cells, 94, 114(2010)

16 Almantas Pivrikas, Helmut Neugebauer, Niyazi Serdar Sariciftci, Influence of processing additives to nanomorphology and efficiency of bulk-heterojunction solar cells: A comparative review, Solar Energy, 85, 1226(2011)

17 J.Peet, J.Y.Kim, N.E.Coates, W.L.Ma, D.Moses, A.J.Heeger, G.C.Bazan, Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6, 497(2007)

18 Sung Heum Park, Kwangghee Lee, A. J. Heeger, Bulk heterojunction solar cells with intema1quantum eficiency approaching 100%, Nature Photonics, 3, 297(2009)

19 Ali Veysel Tunc, Antonietta De Sio, Daniel Riedel, Felix Deschler, Enrico Da Como, J¨urgen Parisi, Elizabeth von Hauff, Molecular doping of low-bandgap-polymer: fullerene solar cells:Effects on transport and solar cells, Organic Electronics, 13, 290(2012)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.