Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 155-161    
  研究论文 本期目录 | 过刊浏览 |
N、Fe共掺杂纳米TiO2的制备和性能
孙涛1, 樊君1, 胡晓云2, 刘恩周1, 何奇1, 侯文倩1, 吴丰1
1.西北大学化工学院 西安 710069
2.西北大学物理学系 西安 710069
Preparation and Properties of N and Fe Codoped Nano TiO2
SUN Tao, FAN Jun, HU Xiaoyun, LIU Enzhou, HE Qi,  HOU Wenqian, WU Feng
1.School of Chemical Engineering, Northwest University, Xi’an 710069
2.Department of Physics, Northwest University, Xi’an 710069
引用本文:

孙涛 樊君 胡晓云 刘恩周 何奇 侯文倩 吴丰. N、Fe共掺杂纳米TiO2的制备和性能[J]. 材料研究学报, 2012, 26(2): 155-161.
, , , , , , . Preparation and Properties of N and Fe Codoped Nano TiO2[J]. Chin J Mater Res, 2012, 26(2): 155-161.

全文: PDF(1258 KB)  
摘要: 以钛酸丁酯为钛源, 用醇热法制备了N、Fe单掺杂及共掺杂纳米TiO2。对样品的晶型结构、表面形貌、比表面积、紫外可见吸收、光致发光和分解水制氢催化性能分别进行了表征。结果表明, 在500℃退火的N、Fe共掺杂TiO2样品均为锐钛矿相棱形纳米颗粒, 分散性较好, 平均粒径约20 nm; N、Fe共掺杂的摩尔分数分别为5.0%和2.0%时, 样品具有良好的可见光吸收活性, 对光的吸收从387 nm(未掺杂锐钛矿相TiO2)红移至510 nm处。主要原因可能是, N和Fe共掺杂在其禁带中产生杂质能级, 导致其禁带宽度减小; N、Fe单掺杂及共掺杂改性, 有效抑制了电子-空穴的复合, 提高了光生载流子的分离效率; 在可见光下(λ>400 nm)N、Fe共掺杂TiO2具有较高的光催化分解水制氢活性, 氢气生成速率为299.2 μmol•g-1•h-1
关键词 无机非金属材料纳米TiO2N、Fe共掺杂醇热法可见光吸收制氢    
Abstract:Pure nano TiO2, N doped, Fe doped, and N and Fe co-doped nano TiO2 were prepared by alcohol-thermal method using butyl titanate as Ti sources. Its crystal structure, surface morphology, specific surface area, UV-Vis. absorption, photoluminescence and photo-catalytic activities of hydrogen evolution were characterized. The results show that all the TiO2 samples own a pure anatase phase with the average diameter of about 20 nm after calcinations at 500 , and distribute uniformly as the prismatic type of particles. N and Fe co-doped TiO2 exhibits higher visible light activity, the optimal doping amount of N and Fe is 5.0% and 2.0% respectively, which can make the absorption wavelength of TiO2 shift to 510nm compared with that of pure TiO2. N and Fe co-doping can generate the impurity levels in the
band gap of TiO2, leading to a good visible light response. The recombination of photo-excited electrons and holes is restrained by N and Fe co-doping. N and Fe copdoped TiO2 displays higher catalytic activity under visible light irradiation (λ >400 nm), the hydrogen evolution rate is 299.2 μmol·g−1·h−1 by water splitting.
Key wordsinorganic non-metallic materials    nano TiO2    N and Fe co-doping    alcohol-thermal method    visible light absorption    hydrogen evolution
收稿日期: 2011-08-15     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金20876125、高等学校博士点基金20096101110013、陕西省自然科学基金2010JZ002、西北大学研究生基金09YJC24和09YJC27资助项目。

1 K.Honda, A.Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37(1972)

2 M.Anpo, M.Takeuchi. The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation, J. Catal., 216, 505(2003)

3 J.Fan, E.Z.Liu, L.Tian, X.Y.Hu, Q.He, T.Sun, Synergistic Effect of N and Ni+2 on Nanotitania in Photocatalytic Reduction of CO2, J. Environ. Eng- ASCE., 137, 171(2011)

4 G.D.Yang, Z.Jiang, H.H.Shi, M.O.Jones, T.C.Xiao, P.P.Edwards, Z.F.Yan, Study on the Photocatalysis of FS Codoped TiO2 Prepared Using Solvothermal Method, Appl. Catal. B: Environ., 96, 458(2010)

5 S.Z.Hu, A.J.Wang, X.Li, H.Lowe, Hydrothermal Synthesis of Well-dispersed Ultrafine N-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. J. Phys. Chem. Solids., 71, 156(2010)

6 H.Xu, L.Z.Zhang, Selective Nonaqueous Synthesis of C-Clcodoped TiO2 with Visible-light Photocatalytic Activity. J. Phys. Chem. C. 114, 11534(2010)

7 R.G.Aditi, P.N.Sajo, B.F.Julio, Selective Synthesis of Ndoped Mesoporous TiO2 Phases Having Enhanced Photocatalytic Activity, Micropor. Mesopor. Mat., 87, 103(2005)

8 LIU Guocong, DONG Hui, LIU Shaoyou, Citric Acidcatalyzed Synrhesis of N-doped Mesoporous TiO2 and Their Photocatalytical Properties, Chinese Journal of Materials Research, 24(6), 631(2010)

(刘国聪, 董辉, 刘少友, N掺杂介孔TiO2柠檬酸催化合成及其光催化性能研究, 材料研究学报, 24(6), 631(2010))

9 HUANG Cuiying, ZHANG Lancui, LI Xiaohui, Effect of Rare Earth Ion Doping on the Photocatalytic Activity of TiO2 for Hydrogen Evolution, Chinese Journal of Catalysis, 29(2), 163(2008)

(黄翠英, 张澜萃, 李晓辉, 稀土离子掺杂对纳米TiO2光催化制氢活性的影响, 催化学报, 29(2), 163(2008))

10 P.L.Zhang, S.Yin, V.Petrykin, M.Kakinana, T.Sato, Preparation of High Performance Fibrous Titania Photocatalysts by the Solvothermal Reaction of Protonated form of Tetratitanate, J. Mol. Catal. A: Chem., 309, 50(2009)

11 QU Xiaoguang, SONG Yunting, LIU Qing, CAO Wenbin, Preparation of Nanocrystalline Cr-doped TiO2 Powders and Their Photocatalytic Properties under Visible Light Irradiation, Chinese Journal of Materials Research, 24 (2), 144(2010)

(曲晓光, 宋云婷, 刘 青, 曹文斌, Cr掺杂纳米TiO2的制备及其可见光催化性能, 材料研究学报, 24(2), 144(2010))

12 Z.J.Li, W.Z.Shen, W.S.He, X.T.Zu, Effect of Fe-doped TiO2 Nanoparticle Derived from Modified Hydrothermal Process on the Photocatalytic Degradation Performance on Methylene Blue, J. Hazard. Mater., 155, 590(2008)

13 JING Liqiang, FU Honggang, WANG Dejun, WEI Xiao, SUN Jiazhong, Surface Photoinduced Charge Separation and Photocatalytic Activity of Sn Doped TiO2 Nanoparticles, Acta Phys. Chim. Sin., 21(4), 378(2005)

(井立强, 付宏刚, 王德军, 魏  霄, 孙家钟, 掺Sn的纳米TiO2表面光致电荷分离及光催化活性, 物理化学学报, 21(4), 378(2005))

14 J.G.Yu, H.G.Yu, C.H.Ao, S.C.Lee, J.C.Yu, W.K.Ho, Preparation, Characterization and Photocatalytic Activity of in Situ Fe–doped TiO2 Thin Films, Thin Solid Films, 496, 273(2006)

15 V.Stengl, S.Bakardjieva, N.Murafa, V.Houskova, K.Lang, Visible-light Photocatalytic Activity of TiO2/ZnS Nanocomposites Prepared by Homogeneous Hydrolysis, Micropor. Mesopor. Mat., 110, 370(2007)

16 R.S.Mane, W.J.Lee, H.M.Pathan, S.H.Han, Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye- sensitized Solar Cells. J. Phys. Chem. B. 109, 15049(2005)

17 K.Das, S.K.De, Optical Properties of the Type-II Core Shell TiO2 and CdS Nanorods for Photovoltaic Applications. J. Phys. Chem. C., 113, 3494(2009)

18 A.Patsoura, D.I.Kondarides, X.E.Verykios, Enhancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-dyes, Appl. Catal. B: Environ., 64, 171(2006)

19 W.Macyk, G.B, H.Kisch, Photoelectrochemical Properties of Platinum(IV) Chloride Surface Modified TiO2, Photochem. Photobiol. Sci., 2, 322(2003)

20 Y.Lee, J.Chae, M.Kang, Comparison of the Photovoltaic Efficiency on DSSC for Nanometer Sized TiO2 Using a Conventional Sol-gel and Solvothermal Methods, J. Ind. Eng. Chem., 16, 609(2010)

21 S.S.Mao, X.B.Chen, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107, 2891(2007)

22 L.Pan, J.J.Zou, X.W.Zhang, L.Wang, Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2, Ind. Eng. Chem. Res., 49, 8526(2010)

23 ZHAO Zongyan, LIU Qingju, ZHANG Jin, ZHU Zhongqi, First-principles Study of 3d Transition Metal-doped Anatas, Acta Phys. Sin-Ch Ed. 56(11), 6592(2007)

(赵宗彦, 柳清菊, 张 瑾, 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究, 物理学报, 56(11), 6592(2007))

24 M.Kang, Synthesis of Fe/TiO2 Photocatalyst with Nanometer Size by Solvothermal Method and the Effect of H2O Addition on Structural Stability and Photodecomposition of Methanol. J. Mol. Catal. A: Chem., 197, 173(2003)

25 M.Seyler, K.Stoewe, W.F.Maier, New Hydrogenproducing Photocatalysts-A Combinatorial Search, Appl. Catal. B: Environ., 76, 146(2007)

26 E.Finazzi, C.D.Valentin, A.Selloni, G.Pacchioni, First Principles Study of Nitrogen Doping at the Anatase TiO2 (101) Surface, J. Phys. Chem. C., 111, 9275(2007)

27 Y.X.Zhang, G.H.Li, Y.X.Jin, Y.Zhang, J.Zhang, L.D.Zhang, Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires, Chem. Phys. Lett., 365, 300(2002)

28 B.Naik, K.M.Parida, Solar Light Active Photodegradation of Phenol over a FexTi1−xO2−yNy Nanophotocatalyst, Ind. Eng. Chem. Res., 49, 8339(2010)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.