Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 107-112    
  研究论文 本期目录 | 过刊浏览 |
二次化学共沉淀法制备片状钡铁氧体的形成历程及磁性能研究
曹晓晖1, 陈威宏1,  刘宇1,  孙杰1,  曹晓晖1,  王文举1,  于名讯2
1.沈阳理工大学环境与化学工程学院 沈阳 110168
2.中国兵器工业集团第53研究所 济南 250031
Synthesis of the Plate–shaped Barium Ferrites by the Second Chemical Co–precipitation Method and Investigation of the Magnetic Properties
MENG Jinhong1, CHEN Weihong1, LIU Yu1, SUN Jie1, CAO Xiaohui1, WANG Wenju1, YU Mingxun2
1.School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110168
2.The 53rd Research Institute of China Ordnance Industry Group Corporation, Jinan 250031
引用本文:

曹晓晖 陈威宏 刘宇 孙杰 曹晓晖 王文举 于名讯. 二次化学共沉淀法制备片状钡铁氧体的形成历程及磁性能研究[J]. 材料研究学报, 2012, 26(1): 107-112.
. Synthesis of the Plate–shaped Barium Ferrites by the Second Chemical Co–precipitation Method and Investigation of the Magnetic Properties[J]. Chin J Mater Res, 2012, 26(1): 107-112.

全文: PDF(1020 KB)  
摘要: 采用二次化学共沉淀法制备出六角或近六角片状BaFe12O19, 其颗粒径向尺寸和径厚比分别为0.4--2 μm和4--20。通过XRD、FTIR、TG/DTA及SEM/EDS分析技术研究了片状BaFe12O19的形成历程。结果表明: 前驱体为非晶态BaCO3、低结晶态Fe(OH)3和晶态α--Fe2O3包覆原料BaFe12O19复合物; 前驱体在焙烧过程中经过
Fe(OH)3脱水、BaCO3分解反应、中间相α--Fe2O3和BaO反应得到终产物BaFe12O19。基于形成历程, 六角片状BaFe12O19较原料BaFe12O19表现出显著提高的颗粒径向尺寸和径厚比、较高的纯度和略低的结晶有序程度, 进而表现出明显提高的矫顽力、略低的饱和磁化强度和剩余磁化强度。
关键词 无机非金属材料片状BaFe12O19二次化学共沉淀法磁性能形成历程    
Abstract:Hexagonal plate–shaped BaFe12O19 ferrites are prepared by the second chemical coprecipitation method using co-precipitation synthesized–BaFe12O19 ferrites as template materials. The particle size of the prepared plate-shaped BaFe12O19 ferrites is in the range of 0.4-2 μm with a diameterto-thickness ratio of 4–20. The synthesis process is studied by using XRD, FTIR, TG/DTA, SEM/EDS. It is shown that the precursor was a composite of BaFe12O19 coated by non–crystalline BaCO3, low-crystalline Fe(OH)3 and crystalline α–Fe2O3. During calcinations,the precursor experiences dehydration of Fe(OH)3, decomposition of BaCO3, and the reaction of α–Fe2O3 and BaO, and finally produces BaFe12O19. The prepared plated–shaped BaFe12O19 ferrite presents a higher coercivity and lower saturation magnetization and remanence, owing to its higher purity, slightly poor crystallinity, larger radial size and diameter–length ratio.
Key wordsinorganic non–metallic materials    plate–shaped BaFe12O19    second chemical co-precipitation method    magnetic property    formation
收稿日期: 2011-03-25     
ZTFLH: 

TM277

 
基金资助:

总装备部预研51310060303资助项目。

1 ZHOU Zhigang, Magnetic Ferrite Materials (Beijing, Science Press, 1981) p.23

(周志刚,  铁氧体磁性材料  (北京, 科学出版社, 1981) p.23)

2 GE Fuding, ZHU Jing, CHEN Limin, The dependence of properties of absorbing materials on the shape of particle absorbants, Aerospace Materials & Technology, 05, 42(1996)

(葛副鼎, 朱静, 陈利民, 吸收剂颗粒形状对吸波材料性能的影响, 宇航材料工艺,  05, 42(1996))

3 George C. Hadjipanayis, Gary A. Prinz, Science and Technology of Nanostructured Magnetic Materials (NewYork, Plenum Press, 1991) p.497

4 X.Y.Liu, J.Wang, L.M.Gan, S.C.Ng, Improving the magnetic properties of hydrothermally synthesized barium ferrite, Journal of Magnetism and Magnetic Materials, 195, 452(1999)

5 A.Mali, A.Ataie, Structural characterization of nanocrystalline BaFe12O19 powders synthesized by sol–gel combustion route, Scripta Materialia, 53, 1065(2005)

6 L.X.Wang, Q.T.Zhang, The effect of pH values on the phase formation and properties of BaFe12O19 prepared by citrate–EDTA complexing method, Journal of Alloys and Compounds, 454, 410(2008)

7 S.R.Janasi, M.Emura, F.J.G.Landgraf, D.Rodrigues, The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders, Journal of Magnetism and Magnetic Materials, 238, 168(2002)

8 Q.L.Li, Y.F.Wang, Preparation of strontium ferrite microtubules with a memplate method and their magnetic property analysis, Acta Chimica Sinica, 10, 1063(2009)

9 W.Zhong, W.P.Ding, N.Zhang, Key step in synthesis of ultrafine BaFe12O19 by sol–gel technique, Journal of Magnetism and Magnetic Materials, 168, 196(1997)

10 G.H.Mu, X.F.Pan, H.G.Shen, M.Y.Gu, Preparation and magnetic properties of composite powders of hollow microspheres coated with barium ferrite, Materials Science and Engineering: A, 445–446, 563(2007)

11 TAN Yuzhuo, MENG Jinhong, SUN Jie, CAO Xiaohui, Formation process of M–type Ba–ferrite from precipitation–toptactic reaction method, Chinese Journal of Inorganic Chemistry, 24(12), 43(2008)

(谭玉琢, 孟锦宏, 孙杰, 曹晓晖, 化学沉淀--局部规整法制备棒状M型钡铁氧体的形成历程, 无机化学学报,  24(12), 43(2008))

12 CAO Xiaohui, TAN Yuzhuo, MENG Jinhong, SUN Jie, Synthesis process of Ba–ferrites from α–FeOOH and γ–FeOOH and investigation of magnetic properties, 55(3),274(2010)

(曹晓晖, 谭玉琢, 孟锦宏, 孙杰, α--FeOOH和γ--FeOOH分别制备BaFe12O19的形成历程及磁性能对比研究, 科学通报,  55(3), 274(2010))

13 S.S.Jewur, J.C.Kuriacose, Studies on the thermal decomposition of ferric hydroxide, Thermochimica Acta., 19, 195(1977)

14 V.Ciupina, S.Zamfirescu, G.Prodan, Evaluation of mean diameter values using scherrer equation applied to electron diffraction images, Nanotechnology–Toxicological Issues and Environmental Safety, 231(2007)

15 YAO Zhiqiang, WANG Qin, ZHONG Bing, The preparation of the ultrafine powder of barium ferrite by the supercritical fluid drying (SCFD) method—II. The study of the IR spectra, Functional Materials, 29, 471(1998)

(姚志强, 王 \ \ 琴, 钟 \ \ 炳, 超临界流体干燥法制备钡铁氧体超细粉末--II.红外吸收光谱的研究, 功能材料,  29, 471(1998))

16 M.Kiyama, Chemistry of ferrouy hydroxide and ferric hydroxide, Recording Materials of Chemistry Information, 1, 32(1980)

(木山雅雄, 氢氧化亚铁和氢氧化铁化学, 化学信息记录材料,  1, 32(1980))

17 Y.A.Sung, S.W.Lee, In–Bo Shim, Growth of nanocrystalline barium ferrite thin films by sol–gel method, Physica Status Solidi, 189, 893(2002)

18 LI Yinyuan, LI Guodong, Physics of Ferrites (Beijing, Science Press, 1978) p.34

(李荫远, 李国栋, 铁氧体物理学  (北京, 科学出版社, 1978) p.34)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.