Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 667-672    
  研究论文 本期目录 | 过刊浏览 |
Cu部分代Co超细硬质合金研究
吝楠1, 吴冲浒2, 张端锋1, 江垚1, 贺跃辉1
1.中南大学粉末冶金国家重点试验室 长沙 410083
2.厦门金鹭特种合金有限公司 厦门 361021
Effect of the Partial Substitution of Co by Cu on the Properties of Ultrafine Cemented Carbide
LIN Nan1,  WU Chonghu2,  ZHANG Duanfeng1,  JIANG Yao1,  HE Yuehui1
1.State key laboratory for powder metallurgy, Central South University, Changsha 410083
2.Xiamen golden egret special alloy company, Xiamen 361021
引用本文:

吝楠 吴冲浒 张端锋 江垚 贺跃辉. Cu部分代Co超细硬质合金研究[J]. 材料研究学报, 2011, 25(6): 667-672.
. Effect of the Partial Substitution of Co by Cu on the Properties of Ultrafine Cemented Carbide[J]. Chin J Mater Res, 2011, 25(6): 667-672.

全文: PDF(887 KB)  
摘要: 基于Cu与Co相同的晶型结构和相似的原子结构, 采用共沉淀方法, 制备Cu部分代Co的WC--10Co硬质合金, 研究Cu对材料的组织和力学性能的影响。实验结果表明, 通过Cu--Co共沉淀方式将Cu加入粘接相中, 形成Co(Cu)固溶体, 在液相烧结过程中Cu均匀地分布在Co中, 可以降低WC在粘接相中的溶解度, 有效阻碍WC颗粒的溶解再析出, 抑制WC晶粒的长大, 提高硬质合金的硬度。Cu的添加还可以使粘结相产生固溶强化, 提高硬质合金的抗弯强度。当Cu的质量添加量为1.5{\%}时, 硬质合金综合力学性能得到提高, 合金硬度由无Cu时的HRA92.6提高至HRA93.2, 抗弯强度由2150 MPa提高至2490 MPa。
关键词 金属材料硬质合金Cu元素共沉淀固溶强化    
Abstract:Based on the same crystal structure and atomic structure of Cu and Co, coprecipitation method was taken to fabricate the ultrafine cemented carbide with Cu partly instead of Co. The effect of Cu on the properties of WC–10Co cemented carbide was investigated. The results show that with the addition of Cu by coprecipitation method, the Co(Cu) solid solution forms, and since Cu can distribute uniformly in WC–10Co during sintering,, the solubility of WC in binding phase decreases, the re–precipitation of dissolved WC particles can be hindered effectively, which results in the repression of WC grains growth, and the hardness of cemented carbide increases. The addition of element Cu can also play a role in solid solution strengthening of binding phase improving the transverse rupture strength of cemented carbide. When the Cu content is 1.5 wt%, cemented carbide can obtain the best mechanical properties with the hardness increasing from HRA92.6 to HRA 93.2 and the transverse rupture strength increasing from 2490 MPa to 2150 MPa.
Key wordsmetallic materials    cemented carbide    Cu element    coprecipitation    solid solution strengthening
收稿日期: 2010-07-26     
ZTFLH: 

TF125.3

 
基金资助:

国家杰出青年科学基金50825102, 国家自然科学基金专项基金50823006, 国家自然科学基金委创新团队50721003资助项目。

1 Z.X.Guo, J.Xiong, M.Yang, X.Y.Song, C.J.Jiang, Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide, International Journal of Refractory Metals and Hard Materials, 26, 601(2008)

2 G.Ostberg, K.Buss, M.Christensen, S.Norgren, H.Andren, D.Mari, G.Wahnstrom, I.Reineck, International Journal of Refractory Metals and Hard Materials, 24, 145(2006)

3 G.Gille, J.Bredthauer, B.Gries, B.Mende, W.Heinrich, Advanced and new grades ofWC and binder powder–their properties and application, International Journal of Refractory Metals and Hard Materials, 18(2), 87(2000)

4 SUN Jing, YANG Jinghui, Research of adding RE in WC–20 (Fe/Co/Ni) Cemented Carbide, Powder metallurgy technology, 16(4), 267–269(1998)

(孙景, 杨金辉, 添加稀土的WC--20(Fe/Co/Ni) 硬质合金的研究, 粉末冶金技术, 16(4), 267(1998))

5 V.B.Voitovich, V.V.Sverdel, R.F.Voitovich, E.I.Golovko, Oxidation of WC–Co, WC–Ni and WC–Co–Ni hard metals in the temperature range 500–800oC, International Journal of Refractory Metals and Hard Materials, 14(4), 289(1996)

6 L.M.Berger, S.Saaro, T.Naumann, M.Wiener, V.Weihnacht, S.Thiele, J. Such´anek, Microstructure and properties of HVOF–sprayed chromium alloyed WC–Co and WC–Ni coatings, Surface and Coatings Technology, 202(18), 4417(2008)

7 H.C.Kim, I.J.Shon, J.K.Yoon, J.M.Doh, Z.A.Munir, Rapid sintering of ultrafine WC—-Ni cermets, International Journal of Refractory Metals and Hard Materials, 24, 427(2006)

8 E.T.Nassaj, S.H.Mirhosseini, An in situ WC—Ni composite fabricated by the SHS method, Journal of Materials Processing Technology, 142, 422(2003)

9 C.M.Fernandes, V.Popovich, M.Matos, A.M.R.Senos, M.T.Vieira, Carbide phases formed in WC–M(M=Fe/Ni/Cr) systems, Ceramics International, 35, 369(2009)

10 I.F.Machado, L.Girardini, I.Lonardelli, A.Molinari, The study of ternary carbides formation during SPS consolidation process in theWC—Co—steel system, International Journal of Refractory Metals and Hard Materials, 27(5), 883(2009)

11 HUANG Shi, YANG Jinghui, LAI Weihua, The effect of adding Cu on WC–13%Fe/Co/Ni Cemented Carbide, Powder metallurgy technology, 13(3), 174(1995)

(黄石, 杨金辉, 赖为华, 添加Cu对WC--13\%Fe/Co/Ni硬质合金性能与组织的影响, 粉末冶金技术, 13(3), 174(1995))

12 S.Lay, J.Thibault, T.S.Hamar, Structure and role of the interfacial layers in VC–rich WC–Co cermets, Philosophy Magazine, 83(10), 1175(2003)

13 R.K.Sadangi, L.E.McCandlish, B.H.Kear, P.Seegopaul, Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys, International Journal of Refractory Metals and Hard Materials, 35(1), 27(1999)

14 H.R.Lee, D.J.Kim, N.M.Hwang, D.Y.Kim, Role of vanadium carbide additive during sintering of WC—Co: mechanism of grain growth inhibition, Journal American Ceramic Society, 86(1), 152(2003)

15 A.H.Chokshi, A.Rosen, J.Karch, H.Gleiter, On the validity of the hall–petch relationship in nanocrystalline materials, Scripta Metallurgica, 23(10), 1679(1989)

16 HU Gengxiang, CAI Xun, Materials science, (Shanghai, Shanghai Jiaotong University Press, 2000) p.203

(胡赓祥, 蔡, 材料科学基础, (上海, 上海交通大学出版社, 2000) p.203)

17 Lavergne, F.Robaut, F.Hodaj, C.H.Allibert, Mechanism of solid–state dissolution of WC in Co–based solutions, Acta Materialia, 50, 1683(2002)

18 A.Yasinskaya, The wetting of refractory carbides, borides, and nitrides by molten metals, Powder Metallurgy and Metal Ceramics, 557(1966)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.