Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 661-666    
  研究论文 本期目录 | 过刊浏览 |
Fe2O3对聚芳基乙炔树脂石墨化的影响研究
吴宏伟, 史铁钧, 谭德新
合肥工业大学化工学院 合肥 230009
Study of Effects of Fe2O3 on Polyarylacetylene Resin Graphitization
WU Hongwei, SHI Tiejun, TAN Dexin
School of Chemical Engineering, Hefei University of Technoligy, Hefei 230009
引用本文:

吴宏伟 史铁钧 谭德新. Fe2O3对聚芳基乙炔树脂石墨化的影响研究[J]. 材料研究学报, 2011, 25(6): 661-666.
. Study of Effects of Fe2O3 on Polyarylacetylene Resin Graphitization[J]. Chin J Mater Res, 2011, 25(6): 661-666.

全文: PDF(1018 KB)  
摘要: 用不同催化剂催化聚芳基乙炔树脂石墨化, 重点研究了Fe2O3含量和热处理温度对PAA石墨化的影响。通过XRD、Raman、SEM和HRTEM分析了PAA热处理温前后的结构和形貌变化。实验结果显示: Fe2O3在热处理过程中转换成铁单质, 有效地促进了PAA树脂的石墨化; Fe2O3含量的增加和热处理温度的升高均可促使石墨结构形成, 且石墨化度达到了92.3%。石墨化后产物主要由石墨碳、铁纳米粒子和非晶碳构成。石墨化的碳纳米带包裹纳米铁颗粒并向外伸展相互连接, 形成碳纳米网络结构。
关键词 无机非金属材料催化石墨化Fe2O3PAA树脂纳米复合材料    
Abstract:Catalytic graphitization of polyarylacetylene resin was studied with the assistance of different kinds of catalysts. The effects of Fe2O3 and carbonized temperature on PAA graphitization were investigated The structure and morphology of PAA resin and graphitized products were characterized by XRD, Raman, SEM and HRTEM. The results show that Fe2O3 was reduced to iron during calcining, which accelerated the graphitization of polyarylacetylene resin. The graphitic structure was formed with the increases of both Fe2O3amount and heat treated temperature, and the degree of graphitization was 92.3%. The graphitized product was composed of the graphitic carbon, the iron nanoparticles and the amorphous carbon. The iron nanoparticles were encapsulated by the graphitic layers. The graphitized nano-ribbon extended throughout the amorphous carbon matrix and interconnected each other to form a graphitized nano-ribbon network.
Key wordsinorganic non-metallic materials    catalytic graphitization    Fe2O3    PAA resin    nanocomposite materials
收稿日期: 2011-03-28     
ZTFLH: 

TQ31

 
基金资助:

国家自然科学基金50973024资助项目。

1 Oya A, Otani S. Catalytic graphitization of carbons by various metals, Carbon, 17(2), 131(1979)

2 Mochida I, Ohtsubo R, Takeshita K, Marsh H. Catalytic graphitization of non-graphitizable carbon by chromium and manganese oxides, Carbon, 18(2), 117(1980)

3 Shoujun Yi, Chao Wu, Zhen Fan, Yafei Kuang, Jinhua Chen, Catalytic graphitization and PAN-based carbon fibers by spontaneously deposited manganese Oxides, Transition Metal Chemistry, 34, 559(2009)

4 Oya A, Marsh H. Review phenomena of catalytic graphitization, J. Mater. Sci., 17(12), 309(1982)

5 Oya A, Yamashita R, Otani S. Catalytic graphitization of carbons by boron, Fuel, 58(7), 495(1979)

6 Shinn-Shyong Tzeng. Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers, Carbon, 44(10), 1986(2006)

7 Oya A, Otni S, Influence of particle size of metal on catalytic graphitization of non-graphitizing carbons, Carbon, 19(5), 391(1981)

8 WANG Yumin, Catalytic graphitization, Carbon, 2, 18(1982)

(李玉敏, 催化石墨化, 炭素,  2, 18(1982))

9 FENG Hanming. Graphitization of iron catalyst, Carbon, 1, 9(1985)

(冯汉明, 石墨化过程中铁的催化作用, 炭素,  1, 9(1985))

10 Katzman H A, Mallon J J, Barry W T, Polyarylacetylenematrix composites for solid rocket motor components, Journal of Advanced Materials, 26(3), 21(1995)

11 ZHANG Shijie, ZHANG Wei, GUO Yalin, BAI Xia. Research progress in a new ablate resistant material- polyarylacetylene resin, Thermoseting Resin, 22(6), 42(2007)

(张世杰, 张炜, 郭亚林, 白侠, 新型耐烧蚀材料-聚芳基乙炔树脂的研究进展, 热固性树脂,  22(6), 42(2007))

12 FU Hongjun, MA Chongqi, KUANG Naihang, LUAN Shlin, Interfacial properties modification of carbon fiber/polyarylacetylene composites, Chinese Journal of Aeronautics, 20, 124(2007)

13 Wei Chieh Tseng, Yun Chen, Geng Wen Chang, Curing conditions of polyarylacetylene prepolymers to obtain thermally resistant materials, Polymer Degradation and Stability, 94(12), 2149(2009)

14 WANG Yugang, SHI Tiejun, LI Zhong, TAN Dexin, Preparation and characterization of wood ceramic of polyarylacetylene resin/Fir powder, Chinese Journal of Applied Chemistry, 4, 418(2010)

(王于刚, 史铁钧, 李忠, 谭德新, 聚芳基乙炔树脂/杉木粉木材陶瓷的制备与表征, 应用化学,  4, 418(2010))

15 Rafael J Zaldivar, Tarzana, Ross W Kobayashi, Long Beach, Carborane catalyzed graphitization of polyarylacetylene(PAA), United States Patent:5288438

16 XU Jinfeng. Synthesis of aromatic acetylides and their polymerization, Thesis for the doctorate of east china university of science and techology, 2007

(徐金峰, 炔基化芳香族化合物的合成及其聚合研究, 华东理工大学博士论文, 2007)

17 Carosino L E, Herak D C. Synthesis of diethynylbenzene, United States, Patent: 4, 997, 991

18 CAO Bin, LIU Qinglei, ZHANG Di. Synthesis and characterization of porous carbon/Fe nanocomposite, Journal of inorganic materials, 25(5), 457(2010)

(曹斌, 刘庆雷, 张荻, 多孔C/Fe纳米复合材料的制备及表征, 无机材料学报,  25(5), 457(2010))

19 ZHANG Fuqin, HUANG Boyun, HAUNG Qizhong, XIONG Xiang, LIU Genshan, YI Maozhong, Progress of graphitization degree of carbon/carbon composites, Mining and Metall Urgical Engineering, 20(4), 10(2000)

(张福勤, 黄伯云, 黄启忠, 熊翔, 刘根山, 易茂中, 炭/炭复合材料石墨化度的研究进展, 矿冶工程, 20(4), 10(2000))

20 LI Dongfeng, WANG Haojing, WANG Xinkui. Raman Spectra of PAN-Based Carbon Fibers during Graphitization, Spectroscopy and Spectral Analysis, 27(11), 2249(2007)

(李东风, 王浩静, 王心葵, PAN基碳纤维在石墨化过程中的拉曼光谱,光谱学与光谱分析,  27(11), 2249(2007))

21 Sadezky A, Muckenhuber H, Grothe H, Niessner R., Poschl U. Raman spectra of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(8), 1731(2005)

22 Moisala A, Nasibulin A G and Kauppinen E I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes A review, J Phys: Condens Matter, 15(42), 3011(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.