Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 444-448    
  研究论文 本期目录 | 过刊浏览 |
改变基底合成不同形貌碳纳米管宏观结构
王志, 王旭
沈阳航空航天大学 沈阳 110136
Synthesis of Carbon Nanotube Macroscopic Structures with Different Morphologies by Changing Substrates
WANG Zhi, WANG Xu
Shenyang Aerospace University, Shenyang 110136
引用本文:

王志 王旭. 改变基底合成不同形貌碳纳米管宏观结构[J]. 材料研究学报, 2011, 25(4): 444-448.
, . Synthesis of Carbon Nanotube Macroscopic Structures with Different Morphologies by Changing Substrates[J]. Chin J Mater Res, 2011, 25(4): 444-448.

全文: PDF(760 KB)  
摘要: 采用化学气相沉积法, 选用不同基底和表面涂层合成了碳纳米管垂直阵列薄膜、管束和条带三种碳纳米管宏观结构, 并用扫描电镜(SEM)和透射电镜(TEM)进行了表征。结果表明: 在石英涂层上合成的定向碳纳米管薄膜厚度达毫米级; 在表面有Al2O3涂层的不锈钢基底上可合成碳纳米管垂直阵列薄膜和不同尺寸宏观管束结构;
在表面有SiO2涂层的不同基底上实现了一种宏观条带的规模制备, 并在镍基底上定向生长出条带。结合实验结果探讨了在不同基底上碳纳米管宏观结构的形成机制。
关键词 无机非金属材料碳纳米管化学气相沉积基底    
Abstract:Macroscopic carbon nanotube (CNT) arrays, bundles and ribbons were synthesized by chemical vapor deposition on different substrates with coating, and were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) examinations. The results show that the well-aligned arrays were synthesized on the quartz glass and the length reaches millimeter range; CNTs macroscopic films or bundles with different diameter were prepared by self-organizing on the stainless steel with Al2O3 coating; Macroscopic CNT ribbons were synthesized on different substrates with SiO2 coating, and aligned ribbons were prepared on nickel substrate. The formation mechanism of macroscopic structures was discussed.
收稿日期: 2010-12-20     
ZTFLH: 

O614.81

 
基金资助:

航空科学基金2010ZF54018和中国博士后基金20060390041资助项目。

1 S.Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56(1991)

2 R.H.Baughman, A.A.Zakhidov, W.A.D.Heer, Carbon nanotubes-the route toward applications, Science, 297, 787(2002)

3 L.M.Ericson, H.Fan, H.Q.Peng, Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers, Science, 305, 1447(2004)

4 Y.L.Li, X.H.Zhong, A.H.Windle, Structural changes of carbon nanotubes in their macroscopic films and fibers by electric sparking processing, Carbon, 46(13), 1751(2008)

5 J.Amadoua, D.Begin, P.Nguyena, J.P.Tessonniera, T.Dintzera, E.Vanhaeckea, M.J.Ledouxa, C.Pham-Huua, Synthesis of a carbon nanotube monolith with controlled macroscopic shape, Carbon, 44(12), 2587(2006)

6 H.Chen, A.Roy, J.B.Baek, L.Zhu, J.Qu, L.M.Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Materials Science and Engineering: R, 70(3-6), 63(2010)

7 H.W.Zhu, C.L.Xu, D.H.Wu, Direct synthesis of long single-walled carbon nanotube stands, Science, 296, 884(2002)

8 K.Hata, D.N.Futaba, K.Mizuno, T.Namai, M.Yumura, S.Iijimal, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306, 1362(2004)

9 X.F.Zhang, A.Y.Cao, B.Q.Wei, Rapid growth of wellaligned carbon nanotube arrays, Chem. Phys. Lett., 362, 285(2002)

10 B.Vigolo, A.Penicaud, C.Coulon, C.Sauder, R.Pailler, C.Journet, Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290, 1331(2000)

11 M.L.Terranova, S.Orlanducci, E.Fazi, V.Sessa, S.Piccirillo, M.Rossi, D.Manno, A.Serra, Organization of single-walled nanotubes into macro-sized rectangularly shaped ribbons, Chem. Phys. Lett., 381, 86(2003)

12 Y.L.Li, I.A.Kinloch, A.H.Windle,Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science, 304, 276(2004)

13 C.Y.Li, H.W.Zhu, K.Suenaga, J.Q.Wei, K.L.Wang, D.H.Wu, Diameter dependent growth mode of carbon nanotubes on nanoporous SiO2 substrates, Materials Letters, 63(15), 1366(2009)

14 T.D.Arcos, Z.M.Wu, P.Oelhafen, Is aluminum a suitable buffer layer for carbon nanotube growth Chem. Phys. Lett., 380, 419(2003)

15 Z.Wang, D.Z.Wang, L.J.Ji, J.J.Wu, R.Wang, J.Liang, Direct synthesis of macroscopic multi-walled carbon nanotube ribbons, Chemical Vapor Deposition, 12, 417(2006)

16 ZHANG XianFeng, CAO AnYuan, SUN QunHui, XU CaiLu, WU DeHai, Patterned Growth of Well-aligned Carbon Nanotube Arrays on Quartz Substrates by Chemical Vapor Deposition, Chinese J. of Inorganic Materials, 18(3), 613(2003)

(张先锋, 曹安源, 孙群慧, 徐才录, 吴德海, 定向碳纳米管阵列在石英玻璃基底上的模板化生长研究, 无机材料学报, 18(3), 613(2003))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.