Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 381-385    
  研究论文 本期目录 | 过刊浏览 |
胆固醇/卵磷脂对壳聚糖模板中羟基磷灰石微结构的影响
丁珊1,2, 唐敏健1, 周长忍1,2, 田金环1,2,李立华1,2
1.暨南大学材料科学与工程系 广州 510630
2.人工器官与材料教育部工程中心 广州 510630
Effects of Cholesterol/Lecithin on the Microscopic Structure of Hydroxyapatite in Chitosan Substrate
DING Shan1,2,  TANG Minjian1,2,  ZHOU Changren1,2,  TIAN Jinhuan1,2,  LI Lihua1,2,
1.Department of Materials Science and Engineering, Ji’nan University, Guangzhou 510630
2.Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510630
引用本文:

丁珊 唐敏健 周长忍 田金环 李立华. 胆固醇/卵磷脂对壳聚糖模板中羟基磷灰石微结构的影响[J]. 材料研究学报, 2011, 25(4): 381-385.
, , , , . Effects of Cholesterol/Lecithin on the Microscopic Structure of Hydroxyapatite in Chitosan Substrate[J]. Chin J Mater Res, 2011, 25(4): 381-385.

全文: PDF(885 KB)  
摘要: 以壳聚糖、羟基磷灰石为基材制备了胆固醇/卵磷脂/壳聚糖/羟基磷灰石(Chol/PC/CS/HA)复合材料, 研究了胆固醇与卵磷脂的协同作用对壳聚糖模板中羟基磷灰石显微结构的影响。结果表明: 随着不同比例胆固醇与卵磷脂的加入, 羟基磷灰石的形貌由球状向棒状转变, 当卵磷脂与胆固醇的比例为5:1时复合材料体系中羟基磷灰石的显微形貌和尺寸与天然骨组织接近; 而没有胆固醇和卵磷脂作用的壳聚糖模板中主要以无定形的片状为主。这表明, 胆固醇和卵磷脂的存在影响了羟基磷灰石的显微结构, 有利于形成不同显微结构的羟基磷灰石。
关键词 复合材料生物仿生显微结构羟基磷灰石壳聚糖    
Abstract:Chitosan/hydroxyapatite composite materials were prepared, the influence of synergistic action of cholesterol and lecithin on the microscopic structure of hydroxyapatite in the chitosan substrate was investigated. The results show: for the composite materials with different proportions of cholesterol and lecithin the microscopic structure of hydroxyapatite changed from the spherical to the claviform. When the proportion of lecithin and cholesterol is 5:1, the microscopic structure and size of hydroxyapatite in composite materials is closed to nature bone tissue. But in the control system without lecithin and cholesterol, the microscopic structures of hydroxyapatite are amorphous lamellate almostly. The cholesterol and lecithin can affect the microscopic structure of hydroxyapatite. Addition the difference proportions of lecithin and cholesterol in composite materials system were benefited of formation of hydroxyapatite production of differences microscopic structure.
Key wordscomposites    biomimetic    microscopic structure    hydroxyapatite    chitosan
收稿日期: 2011-03-30     
ZTFLH: 

TB332

 
基金资助:

国家自然科学基金30900307和教育部博士点基金200805590001资助项目。

1 Matthew J. Olszta, Xingguo Cheng, Sang Soo Jee, Rajendra Kumar, Yi-Yeoun Kim, Michael J. Kaufman, Elliot P. Douglas, Laurie B. Gower a, Bone structure and formation: A new perspective,Materials Science and Engineering R, 58, 77(2007)

2 Lan W., Yubao L., Yi Z., Zhang L., Weihu Y., Yuanhua M, Study on the biomimetic properties of bone substitute material: nano-hydroxyapatite/polyamide 66 composite, Materials Science Forum, 510–511, 938(2006)

3 LIAO Pengfei, MAO Xuan, TANG Shunqing, OUYANG Jianming, WU Peizhu, Preparation of nanohydroxyapatite by precipitation method with adding lecithin, Journal of Jinan University(Natural Science), 25(1), 72(2004)

(廖鹏飞, 毛  萱, 汤顺清, 欧阳健明, 吴佩珠, 卵磷脂参与沉淀法制备纳米羟基磷灰石, 暨南大学学报(自然科学版),  25(1), 72(2004))

4 N.Roveria, G.Falinia, M.C.Sidotia, A.Tampierib, E.Landib, M.Sandrib, B.Parma, Biologically inspired growth of hydroxyapatite nanocrystals inside selfassembled collagen fibers, terials, Science and Engineering:C, 23(3), 441(2003)

5 T.Ikoma, N.Azuma, S.Itoh, H.Omi, S.Nishikawa, S.Toh, J.Tanaka, Spherical porous microparticle of hydroxyapatite/polysaccharides nanocomposites, Key Engineering Materials, 288-289, 159(2005)

6 ZHANG Li, LI Yubao, WEI Jie, ZUO Yi, HAN Jimei, WU Lan, WANG Xuejiang, Preparation and characterization of chitosan/nano-hydroxyapatite composite used for bone repair by co-precipitation method, Journal of Functional Materials, 36(3), 441(2005)

(张  利, 李玉宝, 魏  杰, 纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征, 功能材料,  36(3), 441(2005))

7 CHEN F, WANG Z C, LIN C J, Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials, Materials Letters, 57, 858(2002)

8 LUO Binghong, CHENG Song, ZHONG Cuihong, JIAO Yanpeng, ZHOU Changren, Synthesis of CSg-PDLLA copolymer and in-situ fabrication of CS-g-PDLLA/PDLLA porous scaffolds in supercritical carbon dioxide, Chinese Journal of Materials Research, 24(3), 225(2010)

(罗丙红, 程 松, 钟翠红, 焦延鹏, 周长忍, 超临界CO2中CS--g--PDLLA的合成及其与PDLLA多孔支架材料的原位构建, 材料研究学报,  24(3), 225(2010))

9 ZHU Minying, LI Hong, LI Lihua, ZHOU Changren, Preparation and characterization of nano-hydroxyapatite particles via inverse microemulsion, Materials Review, 20(3), 135(2006)

(朱敏鹰, 李  红, 李立华, 周长忍, 反相微乳液制备纳米羟基磷灰石及其表征, 材料导报,  20(3), 135(2006))

10 Junjie Li, YiPing Chen, Yuji Yin, Fanglian Yao, Kangde Yao, Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ,Biomaterials, 5(28), 781(2007)

11 George R., Mcelhaney R.N, The effect of cholesterol and epicholesterol on the activity and temperature dependence of the purified, phospholipid-reconstituted (Na++Mg2+)– ATPase from Acholeplasma laidlawii B membranes, Biochim lcaet Biophysica Acta, 1107(2), 111(1992)

12 WU Bing, YAO SongNian, TONG Hua, ZHONG GuiRong, Effects of cholesterol on the structure of in lecithin organized assembly, Chinese Journal of Inorganic Chemistry, 15(3), 341(1999)

(吴 冰, 姚松年, 童  华, 钟桂荣, 胆固醇对卵磷脂有序体中生成CaCO3晶型的影响, 无机化学学报,  15(3), 341(1999))

13 Yan C L, Xue D F, Novel self-assembled MgO nanosheet and its precurs ors, J. Phys . Chem. B, 109, 12358(2005)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.