Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 373-380    
  研究论文 本期目录 | 过刊浏览 |
快淬纳米晶Mg2Ni型合金的气态和电化学贮氢动力学
张羊换1,2, 任慧平2, 马志鸿1,3, 李霞1,2, 张国芳1,2, 赵栋梁1
1.钢铁研究总院功能材料研究所 北京 100081
2.内蒙古科技大学省部共建国家重点实验室培育基地 包头 014010
3.包头稀土研究院 包头 014010
Gaseous and Electrochemical Hydrogen Storage Kinetics of As–Spun Nanocrystalline Mg2Ni1−xCux(x=0–0.4) Alloys
ZHANG Yanghuan1,2,   REN Huiping2,   MA Zhihong1,3,   LI Xia ZHANG1,2,  Guofang1,2,  ZHAO Dongliang1
1.Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081
2.Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010
3.Baotou Research Institute of Rare Earths, Baotou 014010
引用本文:

张羊换 任慧平 马志鸿 李霞 张国芳 赵栋梁. 快淬纳米晶Mg2Ni型合金的气态和电化学贮氢动力学[J]. 材料研究学报, 2011, 25(4): 373-380.
, , , , , . Gaseous and Electrochemical Hydrogen Storage Kinetics of As–Spun Nanocrystalline Mg2Ni1−xCux(x=0–0.4) Alloys[J]. Chin J Mater Res, 2011, 25(4): 373-380.

全文: PDF(1457 KB)  
摘要: 用快淬技术制备了Mg2Ni1-xCux(x=0, 0.1, 0.2, 0.3, 0.4)合金, 用XRD、SEM、HRTEM分析了铸态和快淬态合金的微观结构, 测试了合金的气态贮氢动力学性能和电化学贮氢动力学。结果表明, 所有快淬态合金均具有纳米晶结构, 没有非晶相。Cu替代Ni不改变合金的主相Mg2Ni, 而是使合金的晶粒显著细化。Cu替代Ni和快淬处理均显著地提高了合金的气态及电化学贮氢动力学性能。当淬速从0 m/s(铸态被定义为淬速0 m/s) 提高到30 m/s时, Mg2Ni0.8Cu0.2合金的5 min吸氢饱和率从56.7%增加到92.7%, 20 min放氢率从14.9%增加到40.4%, 高倍率放电能力从38.5%增加到75.5%, 氢扩散系数从8.34×10-12cm2/s增加到3.74×10-11cm2/s。
关键词 无机非金属材料Mg2Ni型合金快淬Cu替代Ni贮氢动力学    
Abstract:The Mg2Ni1−xCux (x=0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys have been prepared by melt-spinning technology. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The gaseous hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The results show that all the as-spun alloys hold an entire nanocrystalline structure and are free of amorphous phase. The substitution of Cu for Ni, instead of changing the major phase Mg2Ni, leads to a visible refinement of the grains of the as-cast alloys. Furthermore, both the melt spinning treatment and Cu substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys. As the spinning rate increases from 0 (As-cast is defined as spinning rate of 0 m/s) to 30m/s, the hydrogen absorption saturation ratio in 5 min, for the Mg2Ni0.8Cu0.2alloy, increases from 56.7 to 92.7%, the hydrogen desorption ratio in 20 min from 14.9
to 40.4%, the high rate discharge ability from 38.5 to 75.5%, the hydrogen diffusion coefficient from 8.34×10-12cm2/s to 3.74×10-11cm2/s.
收稿日期: 2010-11-17     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金50871050和50961009, 内蒙古自治区自然科学基金重大2010ZD05资助项目。

1 I.P.Jain, C.Lal, A.Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy, 35(10), 5133(2010)

2 X.Y.ZHAO, L.Q.MA, Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries, Int. J. Hydrogen Energy, 34(11), 4788(2009)

3 T.Spassov, U.K¨oster, Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd, 279(2), 279(1998)

4 L.J.Huang, G.Y.Liang, Z.B.Sun, D.C.Wu, Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys, J. Power Sources, 160(1), 684(2006)

5 S.N.Kwon, S.H.Baek, D.R.Mumm, S.H.Hong, M.Y.Song, Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti, Int. J. Hydrogen Energy, 33(17), 4586(2008)

6 P.Palade, S.Sartori, A.Maddalena, G.Principi, S.Lo Russo, M.Lazarescu, G.Schinteie, V.Kuncser, G.Filoti, Hydrogen storage in Mg–Ni–Fe compounds prepared by rapid quenching and ball milling, J. Alloys Compd, 415(1–2), 170(2006)

7 G.Mulas, F.Delogu, G.Cocco, Effects of mechanical processing on the kinetics of H2 absorption in Mg2Ni alloys, J. Alloys Compd, 473(1–2), 180(2009)

8 I.Gonz`alez Fern`andez, G.O.Meyer, F.C.Gennari, Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling, J. Alloys Compd, 464(1–2), 111(2008)

9 M.Y.Song, S.N.Kwon, J.S.Bae, S.H.Hong, Hydrogenstorage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(6), 1711(2008)

10 M.Savyak, S.Hirnyj, H.-D.Bauer, M.Uhlemann, J.Eckert, L.Schultz, A.Gebert, Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass, J. Alloys Compd, 364(1–2), 229(2004)

11 L.J.Huang, G.Y.Liang, Z.B.Sun, Y.F.Zhou, Nanocrystallization and hydriding properties of amorphous meltspun Mg65Cu25Nd10 alloy, J. Alloys Compd, 432(1–2), 172(2007)

12 G.Y.Liang, D.C.Wu, Lu Li, L.J.Huang, A discussion on decay of discharge capacity for amorphous Mg–Ni–Nd hydrogen storage alloy, J. Power Sources, 186(2), 528(2009)

13 G.K.Williamson, W.H.Hall, X–ray line broadening from filed aluminium and wolfram, Acta Metall, 1(1), 22(1953)

14 G.Zheng, B.N.Popov, R.E.White, Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution, J. Electrochem. Soc, 142(8), 2695(1995)

15 K.Tanaka, Y.Kanda, M.Furuhashi, K.Saito, K.Kuroda, H.Saka, Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization, J. Alloy Compd, 295, 521(1999)

16 Y.Wu, W.Han, S.X.Zhou, M.V.Lototsky, J.K.Solberg, V.A.Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd, 466(1–2), 176(2008)

17 L.Zaluski, A.Zaluska, J.O.Str¨om-Olsen, Nanocrystalline metal hydrides, J. Alloys Compd. 253-254, 70(1997)

18 S.Orimo, H.Fujii, K.Ikeda, Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding, Acta Mater, 45(1), 331(1997)

19 J.H.Woo, K.S.Lee, Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying, J. Electrochem. Soc, 146(3), 819(1999)

20 M.Y.Song, C-D.Yim, S.N.Kwon, J-S.Bae, S-H.Hong, Preparation of Mg–23.5Ni–10(Cu or La) hydrogen-storage alloys by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(1), 87(2008)

21 M.Au, J.Wu, Q.Wang, The hydrogen storage properties and the mechanism of the hydriding process of some multicomponent magnesium-base hydrogen storage alloys, Int. J. Hydrogen Energy, 20(2), 141(1995)

22 A.Gasiorowski, W.Iwasieczko, D.Skoryna, H.Drulis, M.Jurczyk, Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd, 364(1–2), 283(2004) 23 N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1–2), 183(1993)

24 H.Niu, D.O.Northwood, Enhanced electrochemical properties of ball-milled Mg2Ni electrodes, Int. J. Hydrogen Energy, 27(1), 69(2002)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.