Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (3): 333-336    
  研究论文 本期目录 | 过刊浏览 |
碱性介质中Pd/Sn石墨电极的电催化性能
楼白杨, 陈茂军, 杨京, 徐斌
浙江工业大学材料与表面工程研究所 杭州 310014
Electro-catalytic Properties of Pd/Sn Graphite Anode in Alkaline Medium
LOU Baiyang, WU Shaolong, YANG Jing, XU Bin
Institute of Materials and Surface Engineering, Zhejiang University of Technology, Hangzhou 310014
引用本文:

楼白杨 陈茂军 杨京 徐斌. 碱性介质中Pd/Sn石墨电极的电催化性能[J]. 材料研究学报, 2011, 25(3): 333-336.
, , , . Electro-catalytic Properties of Pd/Sn Graphite Anode in Alkaline Medium[J]. Chin J Mater Res, 2011, 25(3): 333-336.

全文: PDF(829 KB)  
摘要: 采用化学镀制备了Pd/Sn石墨电极, 用扫描电子显微镜观察了改性后石墨电极试样的微观组织, 用能谱仪确定石墨电极的表面成分, 用循环伏安法及电化学阻抗研究了石墨电极的甲醇氧化电催化性能。结果表明, Pd/Sn以球状颗粒存在于石墨电极表面, 没有出现明显的团聚。峰电流密度与电势扫描速率平方根呈线性关系, 电极上甲醇氧化和中间产物氧化反应速率都随着测试电位的升高而加快。
关键词 无机非金属材料碱性介质Pd/Sn循环伏安法交流阻抗    
Abstract:Pd/Sn graphite electrode had been synthesized by chemical cobalt-plating. The microstructure and composition of modified graphite electrode were analyzed using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Cyclic voltammetry and AC impedance were employed to study the electrocatalytic activity of the catalysts. Results show that Pd/Sn were deposited on graphite matrix as spherical particles and has no agglomerate in it. The relationships between peak current density and the square root of scan rate are linear, and the reaction rates of methanol and COads oxidation increase as the potentials increase.
Key wordsinorganic non-metallic materials    alkaline medium    Pd/Sn    cyclic voltammetry    AC impedance
收稿日期: 2011-02-23     
ZTFLH: 

TB321

 
基金资助:

浙江省新材料及加工工程省重中之重学科开放课题资助项目。

1 XIAO Gang, Fuel Cell Technology (Beijing, Publishing House of Electronics Industry, 2009)

(肖 刚,  燃料电池技术  (北京, 电子工业出版社, 2009))

2 E.H.Yu, K.Scott, Development of direct methanol alkaline fuel cell using anion exchange membranes, J Power Sources, 137(2), 248(2004)

3 Sun ZhiPeng, Zhang XiaoGang, Liang YanYu, Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution, Electrochemistry Communications, 11(3), 557(2009)

4 Innocenzo G Casella, Maria R Guascito, Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium, Electrochimica Acta, 45(7), 1113(1999)

5 ZHENG Haitao, LI Yongliang, LIANG Jianying, SHEN Peikang, Methanol oxidation on Pd-based electrocatalysts, Acta Physico-Chimica Sinica, 23(7), 993(2007)

(郑海涛, 李永亮, 梁剑莹, 沈培康, 甲醇在Pd基电催化剂上的氧化, 物理化学学报,  23(7), 993(2007))

6 P.K.Shen, C.W.Xu, Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts, Electrochemistry Communications, 8(1), 184(2006)

7 A.V.Tripkovic, K.D.Popvic, B.N.Grgur, Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions, Electrochim Acta, 47(22-23), 3707(2002)

8 V.Stamenkovic, M.Arenz, B.B.Blizanac, In situ CO oxidation on well characterized Pt3Sn surfces: A selective review. Surf. Sci., 576, 145(2005)

9 Zhaolin Liu, Bing Guo, Liang Hong, Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation, Electrochemistry Communications, 8(1), 83(2006)

10 A.L.Ocampo, M.Miranda-Hern´andez, J.Morgado, Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance, Journal of Power Sources, 160, 915(2006)

11 Wu Gang, Li Li, Xu BoQing, Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, Electrochimica Acta, 50, 1(2004)

12 Wataru Sugimoto, Kei Aoyama, Tomoyuki Kawaguchi, Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry, Journal of Electroanalytical Chemistry, 576, 215(2005)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.