Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (3): 243-248    
  研究论文 本期目录 | 过刊浏览 |
多级开孔壳聚糖海绵的细胞行为分析
赵名艳1,2,  李立华1,2,  周长忍1,2,  李贤1,2
1.暨南大学材料科学与工程系 广州 510632
2.人工器官与材料教育部工程中心 广州 510632
Analysis of Cell Behaviors in Chitosan Sponges with Hierarchical Open Pores
ZHAO Mingyan1,2, LI Lihua1,2, ZHOU Changren1,2, LI Xian1,2
1.Department of Material Science and Engineering, Jinan University, Guangzhou 510632
2.Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632
引用本文:

赵名艳 李立华 周长忍 李贤. 多级开孔壳聚糖海绵的细胞行为分析[J]. 材料研究学报, 2011, 25(3): 243-248.
, , , . Analysis of Cell Behaviors in Chitosan Sponges with Hierarchical Open Pores[J]. Chin J Mater Res, 2011, 25(3): 243-248.

全文: PDF(936 KB)  
摘要: 使用冰滴为致孔剂制备表面大孔、内部孔洞相连的新型壳聚糖(HPCS)支架, 将其与聚乳酸复合制备出三维蜂窝状孔洞结构的复合支架(THCP)。对HPCS和THCP进行了表面形貌、力学性能、细胞相容性等方面的表征, 并与常规冻干法所制备的壳聚糖(CS)海绵进行了对比。结果表明, 在HPCS海绵表面均匀分布着大而开放的孔洞, 大孔内部形成相互贯通的小孔, 在THCP复合海绵内部形成了相互贯通的蜂窝状结构。THCP支架的力学强度比纯壳聚糖支架有明显的提高, 其细胞活性及细胞增殖指数等都明显优于HPCS及CS海绵。因此, 对壳聚糖拓扑结构的这种设计不仅弥补了常规冻干支架的缺陷, 提高了细胞相容性, 还将表面图案化改性应用延伸到了三维尺度。
关键词 有机高分子材料壳聚糖多级开孔支架蜂窝状结构细胞相容性    
Abstract:A novel hierarchically porous chitosan (HPCS) sponge with large open pores and interconnected small pores on the surface was fabricated with ice particles as poroen. The honeycomb patterned porous composite scaffolds (HPCS) was obtained by immersing the sponges into poly (L-lactic acid) chloroform solution. A comparison of the morphology, mechanical properties and cell compatibility with the three different sponges were made. Results show that honeycomb patterned porous structure is visible in the THCP sponges, wherein interconnected micro pores embedded in larger open pores and formed uniform network. Hierarchically porous structure is visible in the HPCS sponges. The compressive strength of the THCP sponges dramatically increased, cell viability and cell proliferation index (PI) are higher than that of the CS and HPCS sponges. The topographical design of chitosan scaffolds remedied the traditional freeze-drying technique, improved cell biocompatibility and elongated the design of topological structure into the three dimension area.
Key wordsorganic polymer materials    chitosan    hierarchically porous scaffold    honeycomb patterned structure    cell compatability
收稿日期: 2011-03-03     
ZTFLH: 

R318

 
基金资助:

国家自然科学基金30900307、教育部博士点基金255820和广东省自然科学基金博士启动项目9451063201002964资助。

1 S.Pakakrong, S.Orawan, N.Artphop, C.Poonlarp, P.Prasit, S.Pitt, In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells, European, Polymer Journal, 3(46), 428(2010)

2 W.Teo, W.He, S.Ramakrishna, Electrospun scaffold tailored for tissue-specific extracellular matrix, Biotechnol., 1(9), 918(2006)

3 I.Kim, S.Seo, H.Moon, M.Yoo, I.Park, B.Kim, C.Cho, Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv., 26(1), 1(2008)

4 A.Martino, M.Sittinger, M.Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 26(30), 5983(2005)

5 E.Khor, L.Lim, Implantable applications of chitin and chitosan, Biomaterials, 23(24), 2339(2003)

6 Y.Huang, M.Siewe, S.V.Madilhally, Effect of spatial architecture on cellular colonization, Biotechnol. Bioeng., 93(1), 64(2006)

7 H.Zhang, I.Hussain, M.Brust, M.F.Butler, S.P.Rannard, Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles, Cooper AI. Nat. Mater., 4(10), 787(2005)

8 G.Chen, T.Ushida, T.Tateishi, Scaffold design for tissue engineering, Macromol. Biosci., 2(2), 67(2002)

9 S.Rui, X.Rui, H.Ling, L.Ying, X.Qiao, The structure and properties of chitosan/polyethyleneglycol/silica ternary hybrid organic-inorganic films, Chinese Journal of Polymer Science, 26(5), 621(2008)

10 K.Whang, E.Healy, D.R.Elenz, Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture, Southern Biomedical Engineering Conference–Proceedings, 143(1998)

11 Tian Ye, Wang Yingjun, Zhou Changren, Preparation of regular micro-pits polylactide film via phase-separation and its cell affinity evaluation, Journal of Applied Polymer Science, 116(5), 3162(2010)

12 Young-Gwang Ko, Naoki Kawazoe, Tetsuya Tateishi, Preparation of chitosan scaffolds with a hierarchical porous structure, Wiley InterScience, 93(2), 341(2010)

13 Shuilin Wu, Xiangmei Liu, Tao Hu, Paul K.Chu, J.P.Y.Ho, Y.L.Chan, A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals, Nano Letters, 8(11), 3803(2008)

14 Son JoonGon, Kim GeunHyung, Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces, Journal of Biomaterials Science, Polymer Edition, 20(14), 2089(2009)

15 Jian Tana and W.Mark Saltzmana, Biomaterials with hierarchically defined micro-and nanoscale structure, Biomaterials, 25(17), 3593(2004)

16 HUANG Zhihai, LI Jihong, LIN Pinghua, DONG Yinsheng, GUO Chao, SHENG Xiaobo, CHU Chenglin, Electrochemistry assisted depositing hydroxyapatite coating in chitosan porous scaffold, Acta Polym Sin, (3), 273(2009)

(黄志海, 李纪宏, 林萍华, 董寅生, 郭 超, 盛晓波, 储成林, 壳聚糖多孔支架电化学辅助沉积羟基磷灰石涂层研究, 高分子学报, (3), 273(2009)

17 M.C.Wake, C.W.Patrick Jr, A.G.Mikos, Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates, Cell Transplant, 3(4), 339(1994)

18 S.Zhang, F.Gelain, X.Zhao, Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures, Seminars in Cancer Biology, 145(3), 239(2010)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.