Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (3): 237-242    
  研究论文 本期目录 | 过刊浏览 |
前驱体转化低铝含量非晶Si--Al--C--N的高温析晶行为
李松1,2, 张跃1
1.北京航空航天大学材料科学与工程学院~空天材料与服役教育部重点实验室 北京 100191
2.北京玻钢院复合材料有限公司~特种纤维复合材料国家重点实验室 北京 102101
High–temperature Crystallization Behaviors of Amorphous Si–Al–C–N with Low Aluminum Content
LI Song1,2, ZHANG Yue1
1.Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191
2.State Key Laboratory of Advanced Fibre Composites, Beijing Composite Materials Co., Ltd., Beijing 102101
引用本文:

李松 张跃. 前驱体转化低铝含量非晶Si--Al--C--N的高温析晶行为[J]. 材料研究学报, 2011, 25(3): 237-242.
. High–temperature Crystallization Behaviors of Amorphous Si–Al–C–N with Low Aluminum Content[J]. Chin J Mater Res, 2011, 25(3): 237-242.

全文: PDF(1153 KB)  
摘要: 将不同铝含量的聚铝硅氮烷前驱体在氮气保护下1200℃裂解, 再在1400--1800℃高温处理, 制备出非晶Si--Al--C--N。采用红外光谱、X射线衍射、拉曼光谱和透射电子显微镜分别表征前驱体的结构、Si-Al-C-N的析晶特性、自由碳的微观结构, 研究了铝含量、析晶温度和保温时间对非晶Si--Al--C--N析晶性能的影响。结果表明:
具有不同铝含量的非晶Si--Al--C--N在1400℃处理后仍为非晶状态, 但发生组份偏析形成自由碳; 在1500℃出现纳米级β--Si3N4和α--Si3N4晶体; 在1600℃α--Si3N4转变为β--Si3N4,并析出微量α--SiC和2H--SiC/AlN固溶体型晶核; 在1700℃除β--Si3N4外,还析出大量2H--SiC/AlN固溶体和部分α/β--SiC晶体,铝含量最低的Si--Al--C--N陶瓷中的β--Si3N4消失; 在1800℃,只含有β--SiC和2H--SiC/AlN固溶体晶体, 但是发生了相分离并分别形成富AlN和富SiC固溶体区。铝含量的增加有利于晶体析出和晶体数量的增加。非晶SiAlCN在1500℃开始析出纳米晶,在1800℃处理后析出的晶体仍为纳米晶。高共价键非晶SiAlCN的高温析晶过程, 是一个主要由热力学控制的过程。
关键词 无机非金属材料高温析晶行为前驱体转化非晶SiAlCN    
Abstract:Amorphous Si–Al–C–N ceramics with varied aluminum contents, which were derived from polyaluminasilazanes at 1200 %, were heat–treated at 1400–1800 %. The structures of precursors and the crystallization behaviors, free–carbon and microstructure of Si–Al–C–N were characterized by Infrared spectrometry, X–ray diffraction, Raman spectra and transmission electron microscopy. The effects of aluminum contents, crystallization temperatures and times on crystallization properties of amorphous Si–Al–C–N were investigated. The results show that amorphous Si–Al–C–N ceramics are amorphous at 1400 %, but include free-carbon. Nano–scale β–Si3N4 and α–Si3N4 nuclei are precipitated at 1500 %. The α–Si3N4 nucleus transforms into β–Si3N4 after treated at 1600 %, at the same time, a minute quantity of α–SiC and 2H–SiC/AlN solid solution nuclei precipitated. At 1700 % a large number of 2H–SiC/AlN solid solution crystals and a few α/β–SiC crystals precipitated besides β–Si3N4, and the β–Si3N4 phase in the Si–Al–C–N ceramic with lowest aluminum content disappears. At 1800 % only β–SiC and 2H–SiC/AlN solid solution crystal are observed. But phase separation takes place at this temperature, leading to the formation of AlN–rich and SiC–rich solid solution region, respectively. With increasing aluminum content, crystallization ability of amorphous Si–Al–C–N ceramics and quantities of grain increase. Nano-scale crystals precipitate from the amorphous Si–Al–C–N at 1500 %, but even until 1800 % the precipitated crystals are still nano–scale crystals. The high-temperature crystallization process of amorphous Si–Al–C–N with high covalence is a process controlled by thermodynamics.
Key wordsinorganic nonmetallic materials    high-temperature crystallization behavior    precursorderived    amorphous    SiAlCN
收稿日期: 2011-02-15     
ZTFLH: 

TQ174

 
基金资助:

国家自然科学基金51072010, 教育部高校博士点专项科研基金20091102110002, 长江学者和创新团队发展计划IRT0805资助项目。

1 P.Greil, M.Seibold, Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication, Journal of Materials Science, 27(9), 1053(1992)

2 Peter Greil, Near net shape manufacturing of polymer derived ceramics, Journal of the European Ceramic Society, 18(13), 1905(1998)

3 G.Ziegler, H.J.kleebe, G.Motz, H.Muller, S.Traβl, W.Weibelzahl, Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers, Materials Chemistry and Physics, 61(1), 55(1999)

4 S.R.Shah, R.Raj, Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process, Acta Materialia, 50(16), 4093(2002)

5 S.Sarkar, A.Chunder, W.Fei, L.An, L.Zhai, Superhydrophobic mats of polymer-derived ceramic fibers, Journal of the American Ceramic Society, 91(8), 2751(2008)

6 L.An, Y.Wang, L.Bharadwaj, L.Zhang, Y.Fan, D.Jiang, Y.Sohn, V.H.Desai, J.Kapat, L.C.Chow, Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion, Advanced Engineering Materials, 5(6), 337(2004)

7 Y.Wang, L.An, Oxidation of polymer-derived SiAlCN ceramics, Journal of the American Ceramic Society, 88(11), 3075(2005)

8 Y.Wang, W.Fei, L.An, Oxidation/corrosion of polymerderived SiAlCN ceramics in water vapor, Journal of the American Ceramic Society, 89(3), 1079(2006)

9 Y.Wang, Y.Fan, L.Zhang, W.Zhang, L.An, Polymer– derived SiAlCN ceramics resist oxidation at 1400oC, Scripta Materialia, 55(4), 295(2006)

10 K.J.L.Paciorek, J.H.Nakahara, L.A.Hoferkamp, C.George, J.L.Flippen-Anderson, R.Gilardi, W.R.Schmidt, Reaction of tris[bis(trimethylsilyl)amino]aluminum with ammonia and pyrolysis studies, Chemistry of Materials, 3(1), 82(1991)

11 G.Verdecia, K.L.O’Brien, W.R.Schmidt, T.M.Apple, Aluminum–27 and silicon–29 solid–state nuclear magnetic resonance study of silicon carbide/aluminum nitride systems: effect of silicon/aluminum ratio and pyrolysis temperature, Chemistry of Materials, 10(4), 1003(1998)

12 H.Nakashima, S.Koyama, K.Kuroda, Y.Sugahara, Conversion of a precursor derived from cage-type and cyclic molecular building blocks into Al–Si–N–C ceramic composites, Journal of the American Ceramic Society, 85(1), 59(2002)

13 R.Toyoda, S.Kitaoka, Y.Sugahara, Modification of perhydropolysilazane with aluminum hydride: preparation of poly(aluminasilazane)s and their conversion into Si-Al-NC ceramics, Journal of the American Ceramic Society, 28(1), 271(2008)

14 F.Berger, M.Weinmann, F.Aldinger, K.M¨uller, Solid-state NMR studies of the preparation of Si-Al-C-N ceramics from aluminum-modified polysilazanes and polysilylcarbodiimides, Chemistry of Materials, 16(5), 919(2004)

15 YANG Nanru, Test Methods of Inorganic Non-metallic Materials (Wuhan, Wuhan University of Technology Press, 2003) p.91

(杨南如,  无机非金属材料测试方法  (武汉, 武汉理工大学出版社, 2003) p.91)

16 Y.Mori, Y.Sugahara, Pyrolytic conversion of an Al–Si–N–C precursor prepared via hydrosilylation between [Me(H)SiNH]4 and [HAlN(allyl)]m[HAlN(ethyl)]n, Applied Organometallic Chemistry, 20(8), 527(2006)

17 A.M¨uller, P.Gerstel, E.Butchereit, K.G.Nickel, F.Aldinger, Si/B/C/N/Al precursor-derived ceramics: synthesis, high temperature behaviour and oxidation resistance, Journal of the European Ceramic Society, 24(12), 3409(2004)

18 W.R.Schmidt, D.M.Narsavage-Heald, D.M.Jones, P.S.Marchetti, D.Raker, G.E.Maciel, Poly(borosilazane) precursors to ceramics nanocomposites, Chemistry of Materials, 11(6), 1455(1999)

19 J.L¨ucke, J.Hacker, D.Suttor, G.Ziegler, Synthesis and characterization of silazane-based polymers as precursors for ceramic matrix composites, Applied Organometallic Chemistry, 11(2), 181(1997)

20 W.Rafaniello, K.Cho, A.V.Virkar, Fabrication and characterization of SiC-AlN alloys, Journal of Materials Science, 16(12), 3479(1981)

21 M.Miura, T.Yogo, S.Hirano, Phase separation and toughening of SiC-AlN solid-solution ceramics, Journal of Materials Science, 28(14), 3859(1993)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.