Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (3): 225-230    
  研究论文 本期目录 | 过刊浏览 |
非胶原蛋白模拟多肽E8DS促进I型胶原仿生矿化
王秀梅, 王琼, 程振江, 崔福斋
清华大学材料科学与工程系新型陶瓷与精细工艺国家重点实验室 北京 100084
Biomineralization of type I collagen promoted by an engineered non-collagen protein–derived peptide E8DS
WANG Xiumei, WANG Qiong, CHENG Zhenjiang, CUI Fuzhai
State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science $\&$ Engineering, Tsinghua University, Beijing 100084
引用本文:

王秀梅 王琼 程振江 崔福斋. 非胶原蛋白模拟多肽E8DS促进I型胶原仿生矿化[J]. 材料研究学报, 2011, 25(3): 225-230.
, , , . Biomineralization of type I collagen promoted by an engineered non-collagen protein–derived peptide E8DS[J]. Chin J Mater Res, 2011, 25(3): 225-230.

全文: PDF(1034 KB)  
摘要: 通过分析骨涎蛋白和牙本质基质蛋白的功能域, 设计合成了一种非胶原蛋白模拟多肽E8DS (EEEEEEEEDSESSEEDR), 引入胶原蛋白仿生矿化体系, 共同调控磷酸钙晶体的矿化过程。圆二色谱和红外光谱分析结果表明, 多肽E8DS可与钙离子和胶原分子通过静电作用相结合。使用稳态凝胶系统对多肽E8DS的分析结果表明,
E8DS具有很强的调控钙磷盐矿化的能力。多肽的加入有助于胶原纤维的分子组装, 增加了形核位点, 促进了磷酸钙在胶原纤维表面矿化, 使胶原纤维的矿化程度明显提高。
关键词 有机高分子材料生物矿化非胶原蛋白胶原纤维多肽    
Abstract:Peptides with sequence (EEEEEEEEDSpESpSp$EEDR) were synthesized to mimic the biomineralization function of non-collagenous protein over the type I collagens. The results show that the peptide can be bound to Ca$^{2+}$and type I collagen by electrostatic interactions. Moreover, synthetic peptide is conducive to calcium ions binding and promotes the nucleation and formation of minerals on the surface of collagen fibrils. Designed peptides also presented a function of accelerating type I collagen fibrillogenesis and the formation of fibrils bundle or network.
Key wordsorganic polymer materials    biomineralization    non-collagenous protein    collagen    peptide
收稿日期: 2011-02-23     
ZTFLH: 

TB324

 
基金资助:

国家自然科学基金50830102重点资助项目和国家高技术研究发展计划2011AA030105资助项目。

1 G.He, A.George, Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro, Journal of Biological Chemistry, 279(12), 11649(2004)

2 R.Fujisawa, Y.Nodasaka, Y.Kuboki, Further characterization of interaction between bone sialoprotein (BSP) and collagen, Calcified Tissue International, 56(2), 140(1995)

3 C.E.Tye, G.K.Hunter, H.A.Goldberg, Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction, Journal of Biological Chemistry, 280(14), 13487(2005)

4 J.J.Hao, A.Ramachandran, A.George, Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization, Journal of Histochemistry & Cytochemistry, 57(3), 227(2009)

5 S.Weiner, W.Traub, H.D.Wagner, Lamellar bone: Structure-function relations, Journal of Structural Biology, 126(3), 241(1999)

6 W.Zhang, S.S.Liao, F.Z.Cui, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chemistry of Materials, 15(16), 3221(2003)

7 J.H.Kinney, S.Habelitz, S.J.Marshall, G.W.Marshall, The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin, Journal of Dental Research, 82(12), 957(2003)

8 S.X.Xiao, C.Yu, X.M.Chou, W.J.Yuan, Y.Wang, L.Bu, G.Fu, M.Q.Qian, J.Yang, Y.Z.Shi, L.D.Hu, B.Han, Z.M.Wang, W.Huang, J.Liu, Z.Chen, G.P.Zhao, X.Y.Kong, Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP, Nature Genetics, 27(2), 201(2001)

9 R.Srinivasan, B.Chen, J.P.Gorski, A.George, Recombinant expression and characterization of dentin matrix protein 1, Connective Tissue Research, 40(4), 251(1999)

10 A.George, A.Veis, Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition, Chemical Reviews, 108(11), 4670(2008)

11 R.M.Wazen, C.E.Tye, H.A.Goldberg, G.K.Hunter, C.E.Smith, A.Nanci, In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein, Journal of Histochemistry & Cytochemistry, 55(1), 35(2007)

12 N.L.Harris, K.R.Rattray, C.E.Tye, T.M.Underhill, M.J.Somerman, J.A.D’Errico, A.F.Chambers, H G.K.unter, H.A.Goldberg, Functional analysis of bone sialoprotein: Identification of the hydroxyapatitenucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis, Bone, 27(6), 795(2000)

13 D.Iejima, T.Saito, T.Uemura, A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering, Journal of Biomaterials Science-Polymer Edition, 14(10), 1097(2003)

14 F.R.Tay, D.H.Pashley, Guided tissue remineralisation of partially demineralised human dentine, Biomaterials, 29(8), 1127(2008)

15 E.K.Girija, Y.Yokogawa, F.Nagata, Apatite formation on collagen fibrils in the presence of polyacrylic acid, Journal of Materials Science-Materials in Medicine, 15(5), 593(2004)

16 G.D.Pins, D.L.Christiansen, R.Patel, F.H.Silver, Selfassembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties, Biophysical Journal, 73(4), 2164(1997)

17 G.K.Hunter, P.V.Hauschka, A.R.Poole, L.C.Rosenberg, H.A.Goldberg, Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins, Biochemical Journal, 317(1), 59(1996)

18 G.K.Hunter, H.A.Goldberg, Nucleation of hydroxyapatite by bone sialoprotein, Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8562(1993)

19 K.E.Kadler, D.F.Holmes, J.A.Trotter, J.A.Chapman, Collagen fibril formation, Biochemical Journal, 316(1), 1(1996)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.