Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 219-224    
  研究论文 本期目录 | 过刊浏览 |
CeO2纳米棒的微波合成及其光催化性能
齐恩磊, 满丽莹, 王孙昊, 王介强
济南大学材料科学与工程学院 济南 250022
Microwave Homogeneous Synthesis and Photocatalytic Property of CeO2 Nanorods
QI Enlei MAN Liying WANG Sunhao WANG Jieqiang
School of Materials Science & Engineering, University of Jinan, Jinan 250022
引用本文:

齐恩磊 满丽莹 王孙昊 王介强. CeO2纳米棒的微波合成及其光催化性能[J]. 材料研究学报, 2011, 25(2): 219-224.
, , , . Microwave Homogeneous Synthesis and Photocatalytic Property of CeO2 Nanorods[J]. Chin J Mater Res, 2011, 25(2): 219-224.

全文: PDF(1111 KB)  
摘要: 采用微波均相法制备具有光催化活性的CeO2纳米棒, 用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、比表面积与孔径分布测试(BET--BJH)以及紫外--可见吸收光谱测试(UV--vis)等手段对其进行表征, 研究了尿素浓度对晶粒尺寸、形貌和光催化性能的影响, 结果表明, 当尿素浓度达到6.0 mol/L时产物的棒状结构明显, 由粒径为20--40 nm的晶粒组成的球链状结构聚集而成, 且催化性能较好。以甲基橙为脱色模型进行降解反应, 当氧化铈纳米棒加入量为2.0 g/L时, 可见光照1 h后甲基橙降解率达到了95.4%, 明显高于二氧化钛P25的降解率。
关键词 无机非金属材料纳米材料CeO2纳米棒微波均相光催化    
Abstract:Nanorod–CeO2 photocatalyst was synthesized by the microwave homogeneous precipitation method and was characterized by SEM, TEM, XRD, BET–BJH, and UV–vis spectrum. The effects of urea concentration on the grain size, morphology and Photocatalytic property were investigated. The results show that when the CO(NH2)2concentration is 6.0 mol/L, the obvious club–shaped structure consisted of chains which are formed by grains whose size is 20–40 nm. The photocatalytic activity of CeO2 nanorods was evaluated by degradation of methyl orange. The degradation rate of methyl orange reaches 95.4% under the reaction conditions of the catalyst amount of 2.0 g/L, the sunshine, and the reaction time of 1 h.
Key wordsinorganic non–metallic materials    nano–materials    CeO2 nanorods    microwave homogeneous synthesis    photocatalytic
收稿日期: 2010-12-02     
ZTFLH: 

TB321

 
基金资助:

山东省优秀中青年科学家奖励基金BS2009CL029和山东省重点学科基金XTD0703资助项目。

1 XU hong, LIU Jianhong, CAI honghua, TIAN Deyu, Synthesis of nanometer–sized cerium oxide and its effect on catalyzing decomposition of absorbent powder, Journal of Shenzhen University (science & engineering),19(2), 13(2002)

(徐宏, 刘剑洪, 蔡弘华等, 田徳余, 纳米氧化铈的制备及其催化性能研究, 深圳大学学报(理工版), 19(2), 13(2002))

2 LI Xueshun, Preparation and application of rare earth polishing  powder, Journal of the Chinese Rare Earth Society, 20(5), 392(2002)

(李学舜, 稀土抛光粉的生产及应用, 中国稀土学报,  20(5), 392(2002))

3 Seiichiro Imamura, Hiroyuki Yamada, Kazunori Utani, Combustion activity of Ag/CeO2 composite catalyst, Applied Catalysis A:General, 192(2), 221(2000)

4 ZHANG Mei, WEI Zhifeng, DU Xueyan, ZHANG Haijun, LI Wenchao, Effect of CeO2 coating on oxygen sensitivity of TiO2 sensor, Chinese Journal Of Rare Metals, 25(1), 71(2001)

(张梅, 魏志锋, 杜雪岩, 张海军, 李文超, CeO2包覆对TiO$_{2}$传感器材料的氧敏性能的影响, 稀有金属, 25(1), 71(2001))

5 Jacques Barbier Jr., Laetitia Oliviero, Benoist Renard, Daniel Dupreza, Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen–containing pollutants, Catalysis Today, 75, 29(2002)

6 JI Pengfei, ZHANG Jinlong, CHEN Feng, Masakazu Anpo, Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM–48 silica: formation, characterization and photocatalytic activety, J. Phys. Chem. C, 112(46), 17809(2008)

7 G.S.Wu, X.Y.Yuan, T.Xie, G.C.Xu, L.D.Zhang, Y.L.Zhuang, A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction, Mater. Lett., 58(5), 794(2004)

8 SUN W, LI H, WANG Z, CHEN L, HUANG X, Synthesis and characterization of polycrystalline CeO2nanowires, Chem. Lett., 33(6), 662(2004)

9 Vantomme A, Yuan ZY, Du G, Su BL, Surfactant–assisted large–scale preparation of crystalline CeO2 nanorods, Langmuir, 21, 1132(2005)

10 WANG Xun, LI Yadong, Synthesis and characterization of Lanthanide hydroxide single crystal nanowires, Angewandte Chemie International Edition, 41(24), 4790(2002)

11 XU Anwu, FANG Yueping, YOU Liping, LIU Hanqin, A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes, J. Am. Chem. Soc., 125(6), 1494(2003)

12 ZHOU Kebin, YANG Zhiqiang, YANG Sen, Highly reducible CeO2 nanotubes, Chem. Mater., 19(6), 1215(2007)

13 MIAO Jianjun, WANG Hui, LI Yuru, ZHU Jianmin, ZHU Junjie, Ultrasonic–induced synthesis of CeO2 nanotubes, Journal of Crystal Growth, 281, 525(2005)

14 V.G.Pol, O.Palchik, A.Gedanken, I.Felner, Synthesis of europium oxide nanorods by ultrasound irradiation, Physical Inorganic Chemistry, 33(51), 21(2002)

15 G.S.Wu, T.Xie, X.Y.Yuan, B.C.Cheng, L.D.Zhang, An improved sol–gel synthetic route to large–scale CeO2 nanowires, Materials Research Bulletin, 39, 1023(2004)

16 LI Dan, WANG Yuliang, XIA Younan, Electrospinning nanofibers as uniaxially aligned arrays and layer–by–layer stacked films, Advanced Materials, 16(4), 361(2004)

17 YANG Xinghua, SHAO Changlu, LIU Yichun, MU Rixiang, GUAN Hongyu, Nanofibers of CeO2via an electrospinning technique, Thin Solid Films, 478, 228(2005)

18 ZHANG Dengsong, FU Hongxia, SHI Liyi, PAN Chengsi, LI Qiang, CHU Yuliang, YU Weijun, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem., 46(7), 2446(2007)

19 PAN Chengsi, ZhANG Dengsong, SHI Liyi, FANG Jianhui, Template–Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes,

Nanowires, and Nanocubes, Eur. J. Inorg. Chem., 2008(15), 2429(2008)

20 FU Hongxia, ZHANG Dengsong, SHI Liyi, FANG Jianhui, Synthesis and characterization of cerium oxide nanotubes based on carbon nanotubes, Chemical Journal of Chinese Universities, 28(4), 617(2007)

(付红霞, 张登松, 施利毅, 方建慧, 基于碳纳米管的氧化铈纳米管的合成及表征, 高等学校化学学报, \textbf{28}(4), 617(2007))

21 LI Xiaodong, LI Jiguang, DI Huo, XIU Zhimeng, Sun Xudong, Facile synthesis under near–atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines, J. Phys. Chem. C, 113(5), 1806(2009)

22 Richard Kydd, Jason Scott, Wey Yang Teoh, Ken Chiang, Rose Amal, Understanding photocatalytic metallization of preadsorbed ionic gold on titania, ceria, and zirconia, Langmuir, 26(3), 2099(2010)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.