Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 187-192    
  研究论文 本期目录 | 过刊浏览 |
基于双带模型的螺旋炭纤维电导特性
吴法宇, 张峻巍, 周艳文, 李维娟
辽宁科技大学材料与冶金学院 鞍山 114051
Conductance Characteristics of Carbon Microcoil Based on a Two-band Model of π–electron
WU Fayu, ZHANG Junwei, ZHOU Yanwen, LI Weijuan
School of Material and Metallurgy, University of Science and Technology Liao Ning, 185 Qianshan Road, Anshan 114051
引用本文:

吴法宇 张峻巍 周艳文 李维娟. 基于双带模型的螺旋炭纤维电导特性[J]. 材料研究学报, 2011, 25(2): 187-192.
, , , . Conductance Characteristics of Carbon Microcoil Based on a Two-band Model of π–electron[J]. Chin J Mater Res, 2011, 25(2): 187-192.

全文: PDF(848 KB)  
摘要: 采用电子结构的双带模型研究了螺旋炭纤维的电导特性。结果表明: 经石墨化处理后,原始制备态的螺旋炭纤维的晶格趋于完美, 其双带模型的电子能带结构由费米能级压低的p型转变为反应有序结构的n型; 载流子浓度的提高和移动度的明显增大使石墨化后的螺旋炭纤维电导行为明显改善。
关键词 无机非金属材料螺旋炭纤维电导特性π电子双带模型石墨化    
Abstract:A simple two-band model of π-electron (STB) was used to analyze electrical conductance characteristics of carbon microcoil (CMC) in this paper. The research results showed that the as-grown CMC had a p-Type STB model with the Fermi-level depression and the graphitizated CMC had an n-Type STB model for high ordered degree structure. After graphitization, the crystal lattice tended to becoming perfect, and the electrical conductivity of CMC was evidently enhanced as a result of the increasing carrier concentration and carrier mobility.
Key wordsinorganic non-metallic materials    carbon microcoil    electrical conductance characteristics    simple two-band model of π-electron    graphitization
收稿日期: 2010-07-22     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金50872048资助项目。

1 S.Motojima, X.Chen, S.Yang, M.Hasegawa, Properties and potential applications of carbon microcoils/nanocoils, Diamond and Related Materials, 13(11-12), 1989(2004)

2 J.H.Du, C.Sun, S.Bai, G.Su, Z.Ying, H.M.Cheng, Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band, Journal of Materials Research, 17(5), 1232(2002)

3 X.Q.Chen, S.Motojima, H.Iwanga, Vapor phase preparation of super-elastic carbon micro-coils, Journal of Crystal Growth, 237-239, 1931(2002)

4 M.Fujii, M.Matsui, S.Motojima, Y.Hishikawa, Magnetoresistance in carbon micro-coils obtained by chemical vapor deposition, Thin Solid Films, 409(1), 78(2002)

5 M.Fujii, M.Matsui, S.Motojima, Y.Hishikawa, Magnetoresistance in carbon micro-coils annealed at various temperatures, Journal of Crystal Growth, 237-239, 1937(2002)

6 SHEN Jiaoyan, ZANG Taocheng, CAO Gongxun, Electrical properties of a single microcoiled carbon fiber, Journal of Suzhou University of Science and Technology (Natural Science), 26(1), 31(2009)

(沈娇艳, 藏涛成, 曹功勋, 单根双螺旋炭纤维的电输运性质, 苏州科技学院学报(自然科学版),  26(1), 31(2009))

7 T.C.Chieu, M.S.Dresselhaus, M.Endo, Raman studies of benzene-derived graphite fibers, Physical Review B, 26(10), 5867(1982)

8 J.Heremans, Electrical conductivity of vapor-grown carbon fibers, Carbon, 23(4), 431(1985)

9 C.A. Klein, STB model and transport properties of pyrolytic graphites, Journal of Applied Physics, 35(10), 2947(1964)

10 L.D.Woolf, J.Chin, Y.R.Lin-Liu, H.Ikezi, Electrical transport properties of benzene-derived graphite fibers, Physical Review B, 30(2), 861(1984)

11 C.A.Klein, Pyrolytic graphites: their description as semimetallic molecular solids, Journal of Applied Physics, 33(11), 3338(1962)

12 C.A.Klein, W.D.Straub, Carrier densities and mobilities in pyrolytic graphite, Physical Review, 123(5), 1581(1961)

13 C.A.Klein, W.D.Straub, R.J.Diefendorf, Evidence of single-crystal characteristics in highly annealed pyrolytic graphite, Physical Review, 125(2), 468(1962)

14 LI Feng, DU Jinhong, BAI Shuo, CHENG Huiming, Micro-structural analysis on carbon micro-coil, Chinese Journal of Materials Research, 18(2), 113(2004)

(李峰, 杜金红, 白朔, 成会明, 螺旋炭纤维的结构分析,材料研究学报,  18(2), 113(2004))

15 WU Fayu, DU Jinhong, LIU Chenguang, LI Lixiang, CHENG Huiming, The microstructure and energy storage characteristics of micro-coiled carbon fibers, New Carbon Materials, 19(2), 81(2004)

(吴法宇, 杜金红, 刘辰光, 李莉香, 成会明, 螺旋炭纤维的微观结构与储能特性, 新型炭材料,  19(2), 81(2004))

16 WU Fayu, Micro-structure and transport properties of multi-walled carbon nanotubes and micro-coiled carbon fibers, Ph.D. Thesis, Shenyang: Institute of Metal Research, Chinese Academy of Sciences (2006)

(吴法宇, 多壁纳米碳管和螺旋炭纤维的微观结构与输运性能, 博士学位论文, 沈阳: 中国科学院金属研究所(2006))

17 I.L.Spain, Chemistry and Physics of Carbon (Vol.16), New York: Marcel Dekker Inc.(1980)

18 A.A.Koos, R.Ehlich, Z.E.Horvath, Z.Osvath, J.Gyulai, J.B.Nagy, L.P.Biro, STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 23(1-2), 275(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.