Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 1-6    
  研究论文 本期目录 | 过刊浏览 |
Gum Metal钛合金研究进展
杨义1,2, 李阁平1, 吴松全1,3, 李玉兰1, 杨柯1
1.中国科学院金属研究所 沈阳 110016
2.西北有色金属研究院 西安 710016
3.中国科学院研究生院 北京 100039
Progress in Research of Gum Metal
YANG Yi1,2,  LI Geping1,  WU Songquan1,3,  LI Yulan1,  YANG Ke1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.Northwest Institute for Non-ferrous Metal Research, Xi'an 710016
3.Graduate University Chinese Academy of Sciences, Beijing 100039
引用本文:

杨义 李阁平 吴松全 李玉兰 杨柯. Gum Metal钛合金研究进展[J]. 材料研究学报, 2011, 25(1): 1-6.
, , , , . Progress in Research of Gum Metal[J]. Chin J Mater Res, 2011, 25(1): 1-6.

全文: PDF(979 KB)  
摘要: Gum Metal特指一类符合某些特定电子状态参数和成分条件的钛合金, 具有很多特异的性能, 如室温超塑性、低加工硬化率, 经历超过90%的冷旋锻后具有高强度、非线性超弹性、低的杨氏模量, 以及Invar和Elinvar性能等。自Gum Metal问世以来, 其特异性能的机理和变形机制便一直存在很大的争议。本文结合作者近几年的研究工作, 从合金设计、制备工艺、性能、成分敏感性和塑性变形行为等几个方面, 综合评述了该类合金的研究现状。
关键词 金属材料 Gum Metal 综述 合金设计  制备工艺  变形机制    
Abstract:Gum Metal stands for a group of multifunctional titanium alloys those satisfy certain special magic electronic parameters and chemical compositions. These alloys exhibit a series of unique properties, such as superplasticity and low work hardening ratio at room temperature, and high strength, nonlinear superelasticity, low elastic modulus, Invar and Elinvar behavior after severe cold deformation. The unique properties and deformation mechanism have been disputed seriously since the alloys were developed. In this paper, by integrating our research work, the progress in research of Gum Metal is reviewed from the aspects of alloy design, preparation process, properties, composition sensitivity and plastic deformation behaviors.
Key wordsGum Metal    alloy design    composition    preparation process    deformation mechanism
收稿日期: 2010-09-21     
ZTFLH: 

TG146

 
基金资助:

中国科学院金属研究所创新基金, 国家“九七三”计划2007CB613805和国家自然科学基金51001088资助项目。

1 T.Saito, T.Furuta, J.H.Hwang, S.Kuramoto, K.Nishino, N.Suzuki, R.Chen, A.Yamada, K.Ito, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, C.Iwamoto, Y.Ikuhara, T.Sakuma, Multifunctional alloys obtained via a dislocation–free plastic deformation mechanism, Science,300(18), 464(2003)

2 J.Hwang, S.Kuramoto, T.Furuta, K.Nishino, T.Saito, Phase–stability dependence of plastic deformation behavior in Ti–Nb–Ta–Zr–O alloys, Journal of Materials Engineering and Performance, 14(6), 747(2005)

3 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, EBSP analysis on microstructure of gum metal after plastic deformation, Journal of the Japan Institute of Metals, 69(11), 953(2005)

4 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, Plastic deformation in a multifunctional Ti–Nb–Ta–Zr–O alloy, Metallurgical and Materials Transactions A, 37(3), 657(2006)

5 T.Furuta, S.Kuramoto, R.Chen, J.H.Hwang, K.Nishino, T.Saito, M.Ikeda, Effect of oxygen on phase stability and elastic deformation behavior in Gum Metal, Journal of the Japan Institute of Metals, 70(7), 579(2006)

6 T.Furuta, S.Kuramoto, J.H.Hwang, K.Nishino, T.Saito, Elastic deformation behavior of multi–functional Ti–Nb–Ta–Zr–O alloys, Materials Transactions, 46(12), 3001(2005)

7 T.Furuta, S.Kuramoto, J.H.Hwang, K.Nishino, T.Saito, M.Niinomi, Mechanical properties and phase stability of Ti–Nb–Ta–Zr–O alloys, Materials Transactions, 48(5), 1124(2007)

8 T.Furuta, K.Nishino, J.H.Hwang, A.Yamada, K.Ito, S.Osawa, S.Kuramoto, N.Suzuki, R.Chen, T.Saito, Development of multi functional titanium alloy, 'GUM METAL(, Ti–2003 Science and Technology, Proceedings of 10thWorld Conference on Titanium,Weinheim: Wiley– VCH, 1519(2003)

9 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, Elastic properties of Gum Metal, Materials Science and Engineering A, 442(1–2), 454(2006)

10 S.Kuramoto, T.Furuta, J.H.Hwang, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, K.Nishino, T.Saito, C.Iwamoto, Y.Ikuhara, T.Sakuma, Origin for 'super(properties in GUM METAL, Ti–2003 Science and Technology, Proceedings of 10th World Conference on Titanium, Weinheim: Wiley–VCH, 1527(2003)

11 M.Abdel–Hady, K.Hinoshita, M.Morinaga, General approach to phase stability and elastic properties of β–type Ti–alloys using electronic parameters, Scripta Materialia, 55(5), 477(2006)

12 H.Ikehata, N.Nagasako, T.Furuta, A.Fukumoto, K.Miwa, T.Saito, First–principles calculations for development of low elastic modulus Ti alloys, Physical Review B, 70(17),

174113(2004)

13 H.Ikehata, N.Nagasako, S.Kuramoto, T.Saito, Designing new structural materials using density functional theory: the example of Gum Metal, MRS Bulletin, 31(9), 688(2006)

14 T.Aoyama, H.Kawamura, S.Kotake, Y.Suzuki, Influence of Containerless solidification on hardness in multifunctional titanium based alloys, Key Engineering Materials,

297–300, 495(2005)

15 Y.Yang, G.P.Li, G.M.Cheng, H.Wang, M.Zhang, F.Xu, K.Yang, Stress–introduced α martensite and twinning in a multifunctional titanium alloy, Scripta Materialia, 58(1), 9(2008)

16 R.J.Talling, R.J.Dashwood, M.Jackson, D.Dye, On the mechanism of superelasticity in Gum metal, Acta Materialia, 57(4), 1188(2009)

17 R.J.Talling, R.J.Dashwood, M.Jackson, S.Kuramotoc, D.Dye, Determination of (C11–C12) in Ti–36Nb–2Ta– 3Zr–0.3O (wt.%)(Gum metal), Scripta Materialia, 59(6), 669(2008)

18 M.Y.Gutkin, T.Ishizaki, S.Kuramoto, I.A.Ovidko, Nanodisturbances in deformed Gum Metal, Acta Materialia, 54(9), 2489(2006)

19 M.Y.Gutkin, T.Ishizaki, S.Kuramoto, I.A.Ovidko, N.V.Skiba, Giant faults in deformed Gum Metal, International Journal of Plasticity, 24(8), 1333(2008)

20 Y.Yang, G.P.Li, G.M.Cheng, Y.L.Li, K.Yang, Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy, Applied Physics Letters, 94(6), 061901(2009)

21 Y.Yang, S.Q.Wu, G.P.Li, Y.L.Li, Y.F.Lu, K.Yang, P.Ge, Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining, Acta Materialia, 58(7), 2778(2010)

22 YANG Yi, LI Geping, WU Songquan, LI Yulan, YANG Ke, Effect of Nb content on flow behavior of Ti–Nb–0.7Ta–2Zr–1.4O alloy during cold compression, The Chinese Journal of Nonferrous Metals, 20S, 495(2010)

(杨 义, 李阁平, 吴松全, 李玉兰, 杨 柯, Nb含量对Ti--Nb--0.7Ta--2Zr--1.4O合金室温压缩流变行为的影响, 中国有色金属学报,  20S, 495(2010))

23 H.Xing, W.Y.Guo, J.Sun, Substructure of recovered Ti–23Nb–0.7Ta–2Zr–0 alloy, Transactions of Nonferrous Metals Society of China, 17(6), 1456(2007)

24 H.Xing, J.Sun, Mechanical twinning and omega transition by  <111>{112} shear in a metastable β titanium alloy, Applied Physics Letters, 93(3), 031908(2008)

25 H.Xing, J.Sun, Q.Yao, W.Y.Guo, R.Chen, Origin of substantial plastic deformation in Gum Metals, Applied Physics Letters, 92(15), 151905(2008)

26 E.Withey, M.Jin, A.Minor, S.Kuramoto, D.C.Chrzan, J.W.M.Jr., The deformation of'Gum Metal(in nanoindentation, Materials Science and Engineering A, 493(1–2), 26(2008)

27 E.A.Withey, A.M.Minor, D.C.Chrzan, J.W.M.Jr., S.Kuramoto, The deformation of Gum Metal through in situ compression of nanopillars, Acta Materialia, 58(7), 2652(2010)

28 E.A.Withey, J.Ye, A.M.Minor, S.Kuramoto, D.C.Chrzan, J.W.M.Jr., Nanomechanical testing of Gum Metal, Experimental Mechanics, 50(1), 37(2010)

29 L.Q.Wang, W.J.Lu, J.N.Q, F.Zhang, D.Zhang, Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy, Journal of Alloys

and Compounds, 469(1–2), 512(2008)

30 L.Q.Wang, W.J.Lu, J.N.Qin, F.Zhang, D.Zhang, Microstructure and mechanical properties of cold–rolled TiNbTaZr biomedical β titanium alloy, Materials Science and Engineering A, 490(1–2), 421(2008)

31 Y.B.Wang, Y.H.Zhao, Q.Lian, X.Z.Liao, R.Z.Valiev, S.P.Ringer, Y.T.Zhue, E.J.Lavernia, Grain size and reversible beta–to–omega phase transformation in a Ti alloy, Scripta Materialia, 63(6), 613(2010)

32 J.W.M.Jr., Y.Hanlumyuang, M.Sherburne, E.Withey, D.C.Chrzan, S.Kuramoto, Y.Hayashi, M.Hara, Anomalous transformation–induced deformation in  <110>  textured Gum Metal, Acta Materialia, 58(9), 3271(2010)

33 R.J.Talling, R.J.Dashwood, M.Jackson, D.Dye, Compositional variability in gum metal, Scripta Materialia, 60(11), 1000(2009)

34 T.Yano, Y.Murakami, D.Shindo, S.Kuramoto, Study of the nanostructure of Gum Metal using energy–filtered transmission electron microscopy, Acta Materialia, 57(2), 628(2009)

35 T.S.Li, J.J.W. Morris, N.Nagasako, S.Kuramoto, D.C.Chrzan,'Ideal(engineering alloys, Physical Review Letters, 98(10), 105503(2007)

36 T.Yano, Y.Murakami, D.Shindo, Y.Hayasaka, S.Kuramoto, Transmission electron microscopy studies on nanometer–sized ω phase produced in Gum Metal, Scripta Materialia, 63(5), 536(2010)

37 W.Y.Guo, J.Sun, J.S.Wu, Effect of deformation on corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy, Materials Characterization, 60(3), 173(2009)

38 W.Y.Guo, J.Sun, J.S.Wu, Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringers solution, Materials Chemistry and Physics,  113(2–3), 816(2009)

39 T.Saito, T.Furuta, J.H.Hwang, S.Kuramoto, K.Nishino, N.Suzuki, R.Chen, A.Yamada, K.Ito, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, C.Iwamoto, Y.Ikuhara, T.Sakuma, Multi functional titanium alloy 'GUM METAL(, Materials Science Forum, 426–432, 681(2003)

40 S.Hanada, O.Izumi, Transmission Electron Microscopic Observations of mechanical twinning in metastable beta titanium alloys, Metallurgical Transactions A, 17(8), 1409(1986)

41 S.Hanada, M.Ozeki, O.Izumi, Deformation characteristics in β phase Ti–Nb alloys, Metallurgical Transactions A, 16(5), 789(1985)

42 H.Y.Kim, Y.Ikehara, J.I.Kim, H.Hosoda, S.Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia, 54(9), 2419(2006)

43 H.S.Kim, S.H.Lim, I.D.Yeo, W.Y.Kim, Stress–induced martensitic transformation of metastable β–titanium alloy, Materials Science and Engineering A, 449–451, 322(2007)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.