Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (6): 597-602    
  研究论文 本期目录 | 过刊浏览 |
SrCO3在AZ31镁合金中的细化效果及机理
高声远, 乐启炽, 崔建忠, 张志强
东北大学材料电磁过程研究教育部重点实验室 沈阳 110004
Refining Effect/Mechanism of SrCO3 in AZ31 Magnesium Alloy
GAO Shengyuan, ZHANG Zhiqiang, LE Qichi, CUI Jianzhong
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004
引用本文:

高声远 乐启炽 崔建忠 张志强. SrCO3在AZ31镁合金中的细化效果及机理[J]. 材料研究学报, 2010, 24(6): 597-602.
, , , . Refining Effect/Mechanism of SrCO3 in AZ31 Magnesium Alloy[J]. Chin J Mater Res, 2010, 24(6): 597-602.

全文: PDF(994 KB)  
摘要: 研究了SrCO3对AZ31镁合金凝固组织的影响。结果表明: 在AZ31中添加0.6%的SrCO3, 于760℃时保温10 min细化效果最佳, α--Mg晶粒的尺寸由基体合金的570±15 μm降至110±10 μm, 降幅约80.7%。通过能谱分析, 结合能计算及自由能计算证实细化机理是SrCO3反应后生成的部分Al4C3质点作为异质核心细化晶粒。多余的Al4C3质点钉扎晶界阻碍晶粒长大。Al元素随固/液界面前沿被快速推至晶界, 生成沿晶界生长的β--Mg17Al12相,起到进一步固定晶界的作用。
关键词 金属材料晶粒细化AZ31SrCO3Al4C3    
Abstract:The influence of SrCO3 on the microstructure of AZ31 magnesium alloy has been investigated. The results show that AZ31 magnesium alloy has the best refining effect when the AZ31 magnesium alloy with addition of 0.6% SrCO3 in 760, the average grain size of the α–Mg grain decreases from about 570±15 μm of AZ31 base alloy to 110±10 μm, the reduced extent is about 80.7%.Based on the analysis of EDS, Ebind and Gibbs free energy, the mechanism of grain refiner was generation of Al4C3 that can be used as crystallization center of the Mg when SrCO3 added. Due to the generation of Al4C3 in AZ31 magnesium alloy, the grain boundary is pined and the grain growth is limited. The Al element was quickly pushed to the grain boundary along with the solid/quid intergace,and generated the β– Mg17Al12 phase along the grain boundary which has an effect of immobilizing the grain boundaries.
Key wordsmetallic material    grain refinement    AZ31    SrCO3    Al4C3
收稿日期: 2010-04-01     
ZTFLH: 

TG146.2

 
基金资助:

国家重点基础研究发展计划2007CB613701和2007CB613702,国家自然科学基金50904018、51004032和50974037, 中央高校基本科研业务费90409002和90209002资助项目。

[1] L ahaie D J , Bo ucha rd M. Physical modeling of t he deformation mechanisms of semisolid bodies and mechanical criterion for hot tearing [J] . Metallurgicaland,Material Transactions B ,2001 ,32B(8) :6972705. [2] Kojima Y. Plaftorm science and technology for advanced magnesium alloys[J]. Materials Science Forum, 2000 , 350351: 3 -18. [3] Watanabe H , Tsutsui H, Mukai T, et al. Super plastic behavoir in commercial wrought magnesium alloys[J] . Mater2ials Science Forum , 2000 , 350 351 : 171 -176. [4] Zhou Yao-he, Hu Zhuang-lin, Jie Wan-qi. Solidification Technology[M]. Beijing: China Machine Press, 1998 [5] Mukai T, Watanabe H, Higashi K. Grain refinement of commercial magnesium alloys for high-strain-rate-super plastic forming[J].Materials Science Forum, 2000,350-351:159-170 [6] Tamura Y, Kono N, Motegi T, Sato E. Grain refining mechanism and casting structure of Mg-Zr alloys[J].Journal of Japan Institute of Light Metals, 1998,48(4):185-189 [7] BRAMFFIT BRUCE L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transaction A, 1970, 1(7): 1987?1995. [8] 肖慎修,王崇愚,陈天朗。1998密度泛函理论的离散变分方法在化学和材料物理学中的应用(北京:科学出版社) 第92页 (Xiao Shen-xiu,Wang Chong-yu,Chen Tian-lang 1998 The Application of the Discrete Variational Method in the Density Functional Theory to Chemistry and Materials Physics (Beijing : Science Press) p92 (in Chinese) [9] 张诗昌,段汉桥等.主要合金元素对镁合金组织性能的影响[J]. 铸造,2001,50(6):202-203. (Zhang Shi-chang, Duan Han-qiao,ed. Effects of the Main Alloying Elements on Microstructure and Properties of Magnesium Alloys[J].Foundry,2001,50(6):202-203.) [10] 李忠盛,潘复生,张静。AZ31镁合金的研究现状和发展前景[ J ]. 金属成形工艺, 2004, 22 (1) : 54 - 57. (Li Zhong-sheng,Pan Fu-sheng,Zhang Jing. Present Research Status and Development Prospect of AZ31 Magnesium Alloy[J].Metal Forming Technology,2004,22(1):54-57)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.