Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 322-326    
  研究论文 本期目录 | 过刊浏览 |
草酸根离子诱导PbWO4有序纳米结构的合成和生长机理
方义, 周元林, 熊鹰, 房刚
四川省非金属复合与功能材料重点实验室 省部共建国家重点实验室培育基地 西南科技大学 绵阳 621010
Oxalate-induced Synthesis and Growth Mechanism of PbWO4 Ordered Nanostructures
FANG Yi, ZHOU Yuanlin, XIONG Ying, FANG Gang
State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010
引用本文:

方义 周元林 熊鹰 房刚. 草酸根离子诱导PbWO4有序纳米结构的合成和生长机理[J]. 材料研究学报, 2010, 24(3): 322-326.
, , , . Oxalate-induced Synthesis and Growth Mechanism of PbWO4 Ordered Nanostructures[J]. Chin J Mater Res, 2010, 24(3): 322-326.

全文: PDF(960 KB)  
摘要: 

采用直接沉淀法制备PbWO4有序纳米结构, 以草酸根双羧基阴离子为其生长阶段结构导向剂。使用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)和透射电子显微镜(TEM)等手段对其表征, 研究了草酸根离子在PbWO4纳米晶生长阶段的控制作用, 并提出了PbWO4有序纳米结构的形成机理。

关键词 无机非金属材料  钨酸铅 草酸根 控制合成 有序纳米结构    
Abstract

Ordered PbWO4 nanostructures were synthesized by a direct precipitation method, and the oxalate anions with double carboxyl were employed as structure-directing agents in the growth stage of PbWO4 nanocrystals. The PbWO4 nanostructures were characterized by X-ray power diffraction (XRD), scanning electron microscopy (SEM), infra-red spectrum (IR) and transmission electron microscopy (TEM). The control role of the oxalate anions in the growth stage of PbWO4 nanocrystals was investigated and formation mechanism of the ordered PbWO4 nanocrystals was proposed.

Key wordsinorganic non-metallic materials     lead tungstate    oxalate    controlled-synthesis    ordered nanostructures
收稿日期: 2009-10-29     
ZTFLH: 

O781

 
基金资助:

国家自然科学基金委员会--中国工程物理研究院联合基金10876033资助项目。

[1] Y.Liu, Y.Chu, Y.J.Zhuo, M.Y.Li, L.L.Li, L.H.Dong, Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils, Crystal Growth & Design, 3, 467(2007)
[2] T.Z.Ramon, E.Jamil, L.C.Claude, B.Chegnui, V.Tobias, M.S.Ivan, B.Juan, Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays, J. Phys. Chem. C, 112, 16318(2008)
[3]T.Herricks, J.Y.Chen, Y.N.Xia, Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate, Nano Lett., 12, 2367(2004)
[4]B.Wiley, T.Herricks, Y.G.Sun, Y.N.Xia, Polyol synthesis of silver nanoparticles use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Lett., 9, 1733(2004)
[5] C.Z.Wu, P.Yin, X.Zhu, C.Z.OuYang, Y.Xie, Synthesis of hematite (α–Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors, J. Phys. Chem B, 110, 17806(2006)
[6] A.A.Annenkov, M.V.Korzhik, P.Lecoq, Lead tungstate scinitillation material, Nucl. Instrum. Methods Phys. Res. A, 490, 30(2002)
[7] Y.Zhang, N.A.W.Holzwarth, R.T.Williams, Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4 and PbWO4, Phys. Rev. B, 57, 12738(1998)
[8] Y.H.Chen, C.S.Shi, G.Q.Hu, Influence of Sb doping on the luminescent properties of PbWO4 single crystals, J. Appl. Phys, 87, 1503(2000)
[9] W.Zhao, X.Y.Song, G.Z.Chen, G.R.Tian, S.X.Sun, Hydrothermal synthesis of PbWO4 uniform hierarchical microspheres, Materials Letters, 63, 285(2009)
[10] B.Liu, S.H.Yu, L.J.Li, Q.Zhang, F.Zhang, K.Jiang, Morphology control of stolzite microcrystals with high hierarchy in solution, Angew Chem., Int. Ed, 43, 4745(2004)
[11] X.Y.He, M.H.Cao, Synthesis and characterization of PbCrO4 and PbWO4 nanorods, Nanotechnology, 17, 3139(2006)
[12] J.Geng, J. J.Zhu, D.J.Lu, H.Y.Chen, Sonochemical Preparation of Luminescent PbWO4 Nanocrystalswith Morphology Evolution, Cryst. Growth Des, 6, 321(2006)
[13] G.J.Zhou, M.K.Lv, B.Y.Su, F.Gu, Z.L.Xiu, S.F.Wang, Preparation and characterization of luminescent PbWO4 nano- and macrostructure, Optical Materials, 28, 1385(2006)
[14] A.W.Burton, K.Ong, T.Rea, I.Y.Chan, On the estimation of average crystallite size of zeolites from the scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Microporous and Mesoporous Materials, 117, 75(2009)
[15] S.W.Liu, J.G.Yu, X.F.Zhao, B.Cheng, Effects of polyvinylpyrrolidone and cetyltrimethy lammonium bromide on morphology of lead tungstate particles, Journal of Alloys and Compounds, 433, 73(2007)
[16] Y.Yang, R.Scholz, H.J.Fan, D.Hess, U.Gosele, M.Zacharias, Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment:a case study of Zn2TiO4, ACS Nano, 3, 555(2009)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.