Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 129-136    
  研究论文 本期目录 | 过刊浏览 |
交变电流对60 nm厚纳米晶铜互连线变形失效行为的影响
张金钰; 赵义; 刘刚; 张敬; 孙军
西安交通大学 金属材料强度国家重点实验室 西安 710049
The Effects of Alternating Current on Deformation and Failure of 60 nm–thick Nanocrystalline Cu Lines
ZHANG Jinyu; ZHAO Yi; LIU Gang; ZHANG Jing; SUN Jun
State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; XI'an 710049
引用本文:

张金钰 赵义 刘刚 张敬 孙军. 交变电流对60 nm厚纳米晶铜互连线变形失效行为的影响[J]. 材料研究学报, 2010, 24(2): 129-136.
, , , , . The Effects of Alternating Current on Deformation and Failure of 60 nm–thick Nanocrystalline Cu Lines[J]. Chin J Mater Res, 2010, 24(2): 129-136.

全文: PDF(938 KB)  
摘要: 

原位观察交变电流作用下纳米晶铜互连线的表面损伤形貌演化过程, 重点研究了交变热--机械载荷作用下硅基铜互连线的电致热疲劳性能。结果表明, 铜互连线电致热疲劳寿命随着电流密度的增加而减小;载流铜互连线表现出新的变形方式, 具有独特的电致热疲劳行为特征。在低电流密度(j<10 MA/cm2)条件下, 在电致热疲劳中应力控制的晶粒挤出损伤机制起主导作用; 而在高电流密度(j>10 MA/cm2)条件下, 交变电流产生的焦耳热效应起主导作用。

关键词 金属材料  交变电流  纳米晶铜膜  尺寸效应  疲劳行为    
Abstract

In this paper, the thermal fatigue properties of small scale copper structures on silicon substrate under cyclic thermo–mechanical loads introduced by alternating current have been investigated by in situ observation the evolution of fatigue damage. The effects of alternating current (AC) on the deformation and failure behavior of 60–nm–thick nanocrystalline (NC) Cu lines were studied. Experimental results revealed the current–density dependent failure mechanism of NC Cu lines. Under low current density condition, the failure process was dominated by stress controlled fatigue mechanism of grain extrusion. Under high current density condition, however, the failure mode was Joule–heating dominated thermal activated process.

Key wordsmetallic materials     alternating current    nanocrystalline Cu films    size effect    fatigue behavior
收稿日期: 2009-12-17     
基金资助:

国家重点基础研究规划(973计划)2010CB631003和国家自然科学基金50971097资助项目。

1 I.A.Blech. Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys., 47, 1203(1976) 2 H.Okabayashi, Stress–induced void formation in metallization for integrated circuits, Mater. Sci. Eng. R, 11, 191(1993) 3 C.S.Hau–Riege. An introduction to Cu electromigration, Microelectron. Reliab., 44, 195(2004) 4 E.Misra, C.Marenco, N.D.Theodore, T.L.Alford, Failure mechanisms of silver and aluminum on titanium nitride under high current stress, Thin Solid Films, 474, 235(2005) 5 C.Hu.Reliability phenomena under AC stress, Microelectron. Reliab., 38, 1(1998) 6 R.M¨onig, R.R.Keller, C.A.Volkert, Thermal fatigue testing of thin metal films, Rev. Sci. Instrum., 75, 4997(2004) 7 R.M¨onig, Y.B.Park, C.A.Volkert, Thermal fatigue in copper interconnects. AIP Conference Proceedings, 817, 147(2006) 8 Y.B.Park, R.M¨onig, C.A.Volkert, Thermal fatigue as a possible failure mechanism in copper interconnects, Thin Solid Films, 504, 321(2006) 9 G.P.Zhang, C.A.Volkert, R.Schwaiger, R.M¨onig, O.Kraft, Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab., 47, 2007(2007) 10 J.Zhang, J.Y.Zhang, G.Liu, Y.Zhao, X.D.Ding, G.P.Zhang, J.Sun, Unusual thermal fatigue behaviors in 60 nm thick Cu interconnects, Scripta Mater., 60, 228(2009) 11 J.Zhang, Size effects on the fatigue behaviors in submicron thin copper films, PhD Dissertation, Xi'an Jiaotong University, 2008 12 E.Misra, N.D.Theodore, J.W.Mayer, T.L.Alford, Failure mechanisms of pure silver, pure aluminum and silver– aluminum alloy under high Current stress, Microelectron. Reliab., 46, 2096(2006) 13 S.J.Hwang, J.H.Lee, C.O.Jeong, Y.C.Joo, Effect of film thickness and annealing temperature on hillock distributions in pure Al films, Scripta Mater., 56, 17(2007) 14 S.H.Lee, D.Kwon, The analysis of thermal stress effect on electromigration failure time in Al alloy thin–film interconnects, Thin Solid Films 341 (1999) 136 15 D.K.Kim, W.D.Nix, R.P.VinciMichael, D.Deal, J.D.Plummer. Study of the effect of grain boundary migration on hillock formation in Al thin films, J. Appl. Phys., 90, 781(2001) 16 J.Schiøtz, K.W.Jacobsen, A Maximum in the Strength of Nanocrystalline Copper, Science, 301, 1357(2003) 17 S.P.Baker, A.Kretschmann, E.Arzt, Thermomechanical behavior of different texture components in Cu thin films, Acta Mater., 49, 2145(2001) 18 H.Van Swygenhoven, P.M.Derlet, A.G.Frøseth. Stacking fault energies and slip in nanocrystalline metals, Nat. Mater. 3, 399(2004) 19 G.Dehm, S.H.Oh, P.Gruber, M.Legros, F.D.Fischer, Strain compensation by twinning in Au thin films: Experiment and model, Acta Mater., 55, 6659(2007) 20 V.Yamakov, D.Wolf, S.R.Phillpot, A.K.Mukherjee, H.Gleiter, Deformation mechanism crossover and mechanicalbehaviour in nanocrystalline materials. Philos. Mag. Lett., 83, 385(2003) 21 V.Yamakov, D.Wolf, S.R.Phillpot, A.K.Mukherjee, H.Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular–dynamics simulation, Nat. Mater., 1, 1(2002) 22 M.W.Chen, E.Ma, K.J.Hemker, H.W.Sheng, Y.M.Wang, X.M.Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 300, 1275(2003) 23 J.Schiøtz, F.D.Di Tolla, K.W.Jacobsen. Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561(1998) 24 Z.W.Shan, E.A.Stach, J.M.K.Wiezorek, J.A.Knapp, D.M.Follstaedt, S.X.Mao, Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel, Science, 305, 654(2004) 25 D.Pan, S.Kuwano, T.Fujita, M.W.Chen, Ultra–Large Room–Temperature Compressive Plasticity of a Nanocrystalline Metal, Nano. Lett., 7, 2018(2007) 26 X.L.Wu, E.Ma.Mater, Dislocations and twins in nanocrystalline Ni after severe plastic deformation: the effects of grain size, Sci. Eng. A., 483-484, 84(2008) 27 Z.Budrovic, H.Van Swygenhoven, P.M.Derlet, S.Van Petegem, B.Schmitt, Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel, Science, 304, 273(2004) 28 E.Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater., 46, 5611(1998) 29 C.X.Huang, K.Wang, S.D.Wu, Z.F.Zhang, G.Y.Li, S.X.Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Mater., 54, 655(2006) 30 H.Van Swygenhoven, M.Spaczer, A.Caro, D.Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B, 60, 22(1999) 31 T.Shimokawa, A.Nakatani, H.Kitagawa, Grain–size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations, Phys. Rev. B, 71, 224110(2005) 32 B.N.Kim, K.Hiraga, K.Morita, Viscous grain–boundary sliding and grain rotation accommodated by grain– boundary diffusion, Acta Mater., 53, 1791(2005) 33 K.S.Kumar, H.Van Swygenhoven, S.Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51, 5743(2003) 34 F.ˇSiˇska, S.Forest, P.Gumbsch, Simulations of stressstrain heterogeneities in copper thin films: Texture and substrate effects, Computational Materials Science, 39, 137(2007) 35 X.Z.Liao, F.Zhou, E.J.Lavernia, S.G.Srinivasan, M.I.Baskes, D.W.He, Y.T.Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Appl. Phys. Lett. 83, 632 (2003) 36 X.Z.Liao, F.Zhou, E.J.Lavernia, D.W.He, Y.T.Zhu, Deformation twins in nanocrystalline Al, Appl. Phys. Lett., 83, 5062(2003) 37 D.Chocyk, A.Proszynski, G.Gladyszewski, Diffusional creep induced stress relaxation in thin Cu films on silicon, Microelectron. Eng., 85, 2179(2008) 38 S.J.Hwang, Y.D.Lee, Y.B.Park, J.H.Lee, C.O.Jeong, Y.C.Joo, In situ study of stress relaxation mechanisms of pure Al thin films during isothermal annealing, Scripta Mater., 54, 1841(2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.