Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 123-128    
  研究论文 本期目录 | 过刊浏览 |
水化硅酸钙凝胶的弹塑性和徐变特性
姚武; 梁慷; 何莉
同济大学先进土木工程材料教育部重点实验室 上海 200092
Determination of Elastic–plasticity and Creep of Calcium–Silicate–Hydrate Gel
YAO Wu;  LIANG Kang;  HE Li
Key Laboratory of Advanced Civil Engineering Materials (Tongji University); Ministry of Education; Shanghai 200092
引用本文:

姚武 梁慷 何莉. 水化硅酸钙凝胶的弹塑性和徐变特性[J]. 材料研究学报, 2010, 24(2): 123-128.
, , . Determination of Elastic–plasticity and Creep of Calcium–Silicate–Hydrate Gel[J]. Chin J Mater Res, 2010, 24(2): 123-128.

全文: PDF(565 KB)  
摘要: 

采用纳米压痕技术研究了不同龄期水泥硬化浆体中水化硅酸钙(C--S--H)凝胶的微观弹塑性和徐变特性。结果表明, 随着龄期的增长, C--S--H凝胶在相同荷载作用下的弹性能逐渐减小, 并趋于稳定值, 且低密度C--S--H凝胶的弹性能均高于同龄期的高密度C--S--H凝胶。对于相同的荷载和持荷时间, 高密度C--S--H凝胶的徐变显著低于同龄期低密度C--S--H凝胶。应用纳米压痕技术从微观层面测定了两种密度C--S--H凝胶的变形性能的差异, 揭示了C--S--H凝胶的弹性能和徐变与凝胶的折合弹性模量呈反比关系。

关键词 无机非金属材料 弹塑性 纳米压痕 水化硅酸钙凝胶 徐变    
Abstract

A nanoindentation was used to investigate nanoscale elasto–plastic and creep behaviors of Calcium Silicate Hydrate (C–S–H) gel of hardened cement pastes at different ages. The test results show that with the growth of age, the elastic energy stored in C–S–H gel decreases gradually and finally approaches to a stable value for the fixed load condition. Moreover, the elastic energy stored in low density (LD) C–S–H gel is greater than that stored in high density (HD) C–S–H gel at the same age. For the same load and same holding–time, the creep of HD C–S–H gel is significantly less than that of LD C–S–H gel at the same age. The deformation difference between two C–S–H gels with different densities was determined in micro–scale by using nanoindentation technique, indicating the elastic energy and creep of C–S–H gel are inversely related to its reduced elastic modulus.

Key wordsinorganic non-metallic material    elasto-plastic performance    nanoindentation    calcium silicate hydrate gel    creep
收稿日期: 2009-12-22     
基金资助:

国家重点基础研究发展计划2009CB623105资助项目。

1 P.K.Mehta, P.J.M.Moneteiro, Concrete Microstructure, Properties and Materials (Beijing, China Eletric Power Press, 2008)
(库马·梅塔, 保罗·J.M.蒙特罗, 混凝土:  微观结构、性能和材料, (北京:中国电力出版社, 2008))
2 J.Bensted, P.Barnes, Structure and Performance of Cement (Beijing, Chemical Industry Press, 2009)
(J.本斯迪德, P.巴恩斯.  水泥的结构和性能, (北京:化学工业出版社, 2009))
3 S.Mindess, J.F.Young, D.Darwin, Concrete (Beijing, Chemical Industry Press, 2005)
(西德尼·明德斯, J.弗朗西斯·杨, 戴维·达尔文,  混凝土, (北京, 化学工业出版社, 2005))
4 H.M.Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, 30(1), 101(2000)
5 P.D.Tennis, H.M.Jennings, A Model for two types of calcium silicate hydrate in the microstructure of Portland cement paste, Cement and Concrete Research, 30(6), 855(2000)
6 A.J.Allen, J.J.Thomas, H.M.Jennings, Composition and density of nanoscale calcium–silicate–hydrate in cement, Nature Materials, 6(4), 311(2007)
7 LINJucai,Modern Hardness Testing Technology and Applications (Beijing, China Metrology Publishing House, 2008)
(林巨才,  现代硬度测量技术及应用,  (北京, 中国计量出版社, 2008))
8 G.Constantinides, F–J.Ulm, The nanogranular nature of C–S–H, Journal of the Mechanics and Physics of Solids, 55, 64(2007)
9 J.Nemecek, Creep effects in nanoindentation of hydrated phases cement pastes, Materials Characterization, 60(9), 1028(2009)
10 C.Pichler, R.Lackner, Identification of logarithmic–type creep of calcium silicate hydrates by means of nanoindentation, Strain, 45, 17(2009)
11 P.Mondal, S.P.Shah, Laurence Marks, A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials, Cement and Concrete Research, 37, 1440(2007)
12 P.Mondal, S.P.Shah, Laurence D. Marks, Nanoscale Characterization of Cementitious Materials, ACI Materials Journal, 105(2), 174(2008)
13 M.R.VanLandingham, Review of Instrumented Indentation, Journal of Research of the National Institute of Standards and Technology, 108(4), 249(2003)
14 A.E.Giannakopoulos, S.Suresh, Determination of elastoplastic properties by instrumented sharp indentation, Scripta Materialis, 40(10), 1191(1999)
15 G.Constantinides, F–J.Ulm, The effect of two types of C–S–H on the elasticity of cement–based materials: Results from nanoindentation and micromechanical modeling, Cement and Concrete Research, 34(1), 68(2004)
16 M.Vandamme, F–J.Ulm, Viscoelastic solutions for conical indentation, International Journal of Solids and Structures, 43(10), 3142(2006)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.