Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 69-75    
  研究论文 本期目录 | 过刊浏览 |
Fe2(MoO4)3/Si3N4复合粉末还原过程中的微观组织结构
银锐明1;2;  范景莲1;  刘勋1;  张曙光1
1.中南大学粉末冶金国家重点实验室 长沙 410083
2.湖南工业大学包装与材料工程学院 株洲 412008
Formation Mechanism of Microstructure of Fe2(MoO4)3/Si3N4 Composite Powder by Hydrogen Reduction
YIN Ruiming 1;2 ; FAN Jinglian 1;  LIU Xun 1;  ZHANG Shuguang1
1.State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083
2.College of Packaging and Material Engineering; Hunan University of Technology; Zhuzhou 412008
引用本文:

银锐明 范景莲 刘勋 张曙光. Fe2(MoO4)3/Si3N4复合粉末还原过程中的微观组织结构[J]. 材料研究学报, 2010, 24(1): 69-75.
, , , . Formation Mechanism of Microstructure of Fe2(MoO4)3/Si3N4 Composite Powder by Hydrogen Reduction[J]. Chin J Mater Res, 2010, 24(1): 69-75.

全文: PDF(1236 KB)  
摘要: 

观测Fe2(MoO4)3和Fe2(MoO4)3/Si3N4粉末H2还原后的微结构特征, 研究了其微观组织结构的演变。 结果表明: Fe2(MoO4)3还原后转变为20 nm厚的Fe薄层包覆Mo颗粒的微结构; Fe2(MoO4)3/Si3N4粉末被还原后转变为两种结构形式颗粒粉末, 一种为3--5 nm的薄层Fe包覆在Mo颗粒表面粉末, 一种为粘附有纳米Fe--Mo氮化物、Si、Mo等颗粒的Si3N4粉末。Fe2(MoO4)3/Si3N4粉末还原后形成这种微结构的原因是, 在还原过程中同时发生了两种反应: 一种是Fe2(MoO4)3自身发生分解还原反应, 另一种是Fe2(MoO4)3与Si3N4颗粒表面发生反应。

关键词 无机非金属材料 Si3N4 Fe2(MoO4)3 微结构 非均相沉淀--热还原    
Abstract

The microstructure characterization of Fe2(MoO4)3 and Fe2(MoO4)3/Si3N4 composite powder reduced by hydrogen were investigated, and the formation mechanism of the latter was analyzed. The results show that the microstructure of Fe2(MoO4)3 powder particles reduced by hydrogen was consisted by Mo particles coated with thin layer of Fe with thickness around 20 nm. The microstructure of the other were two kinds of particles with different structure which were consisted by Mo particles coated with nanometer-thin layers of Fe with thickness about 3–5 nm and nano Fe–Mo nitride, Si and Mo as adhesive materials on Si3N4 particles surface. The formation reason of the microstructure of Fe2(MoO4)3/Si3N4 composite powder reduced by hydrogen powder was two reactions during the reduction process. One is the decomposition-reduction reaction of Fe2(MoO4)3, the other is the reaction between the surface of Fe2(MoO4)3 and Si3N4.

收稿日期: 2009-05-06     
基金资助:

国家自然科学青年基金50804016和国家自然科学基金创新研究群体科学基金50721003资助项目。

1 F.Q.Yan, F.Chen, Q.Shen, L.M.Zhang, Spark plasma sintering of α-Si3N4 ceramics with MgO–Al2O3 as sintering additives, Key Engineering Materials, 351, 176(2007)
2 F.Chen, Q.Shen, F.Q.YAN, L.M.Zhang, Pressureless sintering of α-Si3N4 porous ceramics using a H3PO4 poreforming agent, Journal of the American Ceramic Society, 90(8), 2379(2007)
3 G.Woetting, B.Caspers, E.Gugel, R.Westerheide, Hightemperature properties of SiC-Si3N4 particle composites, Journal of Engineering for Gas Turbines and Power, 122(1), 8(2000)
4 S.A.Baldacim, C.Santos, K.Strecker, O.M.M.Silva, C.R.M.Silva, Development and characterization by HRTEM of hot-pressed Si3N4-SiC(w) composites, Journal of Materials Processing Technology, 169(3), 445(2005)
5 M.Wada, K.Kashiwagi, S.Kitaoka, Y.Fuwa, Tribological characteristics of carbon nano-fiber dispersed silicon nitride based composites in high-temperature fuel, Key Engineering Materials, 403, 239(2009)
6 J.Tatami, I.W.Chen, Y.Yamamoto, M.Komastu, K.Komeya, D.K.Kim, T.Wakihara, T.Meguro, Fracture resistance and contact damage of TiN particle reinforced Si3N4 ceramics, Journal of the Ceramic Society of Japan, 114(1335), 1049(2006)
7 V.M.Volkogon, S.N.Gromyko, A.V.Kurdyumov, Effect of Si3N4 on growth of CBN grains in phase transition BNB BNsph, Sverkhtverdye Materialy, (3), 14(1991)
8 S.Q.Zhou, W.Zhao, W.H.Xiong, Microstructure and properties of the cermets based on Ti(C, N), International Journal of Refractory Metals and Hard Materials, 27(1), 26(2009)
9 X.B.Zhang, N.Liu, C.L.Rong, J.Zhou, Microstructure and mechanical properties of TiC-TiN-Zr-WC-Ni-Co cermets, Ceramics International, 35(3), 1187(2009)
10 HAN Jiesheng, WANG Jingbo, ZHANG Shuwei, MENG Junhu, LU Jinjun, Study on the tribological properties of Fe-Mo-CaF2 high temperature self-lubricating material, Tribology, 23(4), 306(2003)
(韩杰胜, 王静波, 张树伟, 孟军虎, 吕晋军, Fe-Mo-CaF2高温自润滑材料的摩擦学特性研究, 摩擦学学报,  23(4), 306(2003))
11 MIAO Mingqing, FU Zhengyi, ZHANG Jinyong, GONG Lunjun, Microstructure and mechanical properties of TiB2/FeMo cermet, Journal of Inorganic Materials, 20(2), 499(2005)
(苗明清, 傅正义, 张金咏, 龚伦军, TiB2/FeMo陶瓷的显微结构与力学性能, 无机材料学报,  20(2), 499(2005))
12 W.C.W.FON, Thermal properties of nano and microstructures, Doctoral Dissertation, California Institute of Technology(2004)
13 YIN Ruiming, FAN Jinglian, LIU Xun, HUANG Baiyun, Preparation of Fe-coated Si3N4 composite powder by heterogeneous precipitation-thermal reduction process, J. Cent. South. Univ. (Science and Technology), 39(1), 7(2008)
(银锐明, 范景莲, 刘勋, 黄伯云, 采用非均相沉淀-热还原法制备铁包覆氮化硅复合粉末, 中南大学学报(自然科学版),  39(1), 7(2008))
14 S.Kishimoto, N.Shinya, Development of metallic closed cellular materials containing polymers, Mater. Des., 21(6), 575(2000)
15 XIANG Tiegen, Molybdenum Metallurgy (Changsha, Central South University Press, 2002)
(向铁根,  钼冶金  (长沙, 中南工业大学出版社, 2002)
16 A.M. ijklmnopnÆ, q. r. sntuvwx, Wang Lingyi, Ammonium Nitrate Technology (Beijing, Chemical Industry Press, 1983) p.319
(А.M.杜博维次基, Я.И.基尔曼, 王令仪, 硝酸铵工艺学 (北京,  化学工业出版社, 1983) p.319)
17 JIN Yong, SUN Xiaosong, XUE Qi, X-ray Diffraction Analysis (Beijing, National Defense Industry Press, 1993) p.261
(晋勇, 孙小松, 薛屺,  X射线衍射分析技术(北京, 国防工业出版社, 2008) p.261)
18 ZHANG Yougang, Generality of Electronic Materials (the second fascicule) (Beijing, National Defense Industry Press, 1993) p.102)
(张有纲,  电子材料现代分析概论 (第二分册), (北京, 国防工业出版社, 1993) p.102)
19 LI Zhengbang, ZHANG Hesheng, GUO Peimin, Smelting of W and Mo containing alloy steel with direct reducing and alloying of scheelite and molybenum oxide, Research on Iron & Steel, 3(108), 52(1999)
(李正邦, 张和生, 郭培民, 利用白钨矿、氧化钼的直接还原合金化冶炼钨钼合金钢, 钢铁研究,  3(108), 52(1999))

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.