Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 25-32    
  研究论文 本期目录 | 过刊浏览 |
在泡沫碳化硅载体上原位生长silicalite--1型沸石晶体
矫义来;  杨振明;  张劲松
中国科学院金属研究所 沈阳 110016
Growth of Silicalite–1 Coatings on SiC Foam Support
JIAO Yilai ; YANG Zhenming ;  ZHANG Jinsong
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

矫义来 杨振明 张劲松. 在泡沫碳化硅载体上原位生长silicalite--1型沸石晶体[J]. 材料研究学报, 2010, 24(1): 25-32.
. Growth of Silicalite–1 Coatings on SiC Foam Support[J]. Chin J Mater Res, 2010, 24(1): 25-32.

全文: PDF(1368 KB)  
摘要: 

以多晶硅颗粒为硅源, 在泡沫碳化硅载体上原位水热合成silicalite--1型沸石晶体。研究了硅颗粒加入量、NaOH浓度以及合成时间等因素对沸石晶体的负载量、晶体尺寸和沸石晶体/泡沫碳化硅复合材料比表面积的影响。结果表明,
以多晶硅颗粒为硅源控制硅酸根的释放速度, 使沸石晶体在碳化硅载体表面异质界面形核, 从而实现沸石晶体在泡沫碳化硅载体表面的连续生长; 当多晶硅量过少时, 溶液中的硅酸根浓度过低, 不能在载体表面形成连续生长的沸石层;
而当多晶硅量过大时, 溶液中硅的浓度过高, 部分沸石晶体在溶液当中形核, 使沸石晶体在载体表面的负载量下降; 提高溶液中NaOH的浓度, 加快硅的溶解, 使溶液中硅的饱和浓度升高, 沸石晶体的形核率也随之升高, 使沸石晶体的负载量增加。在最优条件下制备的silicalite--1/泡沫碳化硅复合材料其沸石晶体的比表面积为81.28 m2g-1

关键词 无机非金属材料 silicalite-1/泡沫碳化硅复合材料 固态硅源 silicalite-1 型沸石 水热合成    
Abstract

Solid polycrystalline silicon particles were used as Si source for in situ hydrothermal synthesis of continuous silicalite–1 coating on SiC foam support in this paper. It is supposed that the Si dissolution rate was suppressed by using solid Si source, which subsequently led to zeolite crystals preferential nucleation and growth on the support. The loading amount, crystal size, layer thickness and specific surface area of the synthesized zeolite coatings were investigated with respect to the polycrystalline silicon particle amount and concentration of NaOH and reaction time. It is found that continuous zeolite layer can not form on the SiC foam ceramic support with too low amount of polycrystal silicon, because of the low concentration of silicic acid radical ions in the solution. By contrast, when the polycrystal silicon amount is too high, the zeolite loading on the support is low. In addition, increasing the NaOH concentration can promote silicon dissolution, increase the saturation concentration of silicon, promote the zeolite nucleation, and increase the loading of zeolite crystals. Zeolite layer with the maximum loading amount of zeolite and a specific surface area of 81 m2g−1 was fabricated on the SiC foam support under optimum conditions.

Key wordsInorganic non-metallic materials         Zeolite/SiC foam composite    Solid Si source    silicalite-1 type zeolite     Hydrothermal synthesis
收稿日期: 2009-08-20     
基金资助:

国家八六三计划、十一五新材料领域重点资助项目2007AA030205。

[1]J.Weitkamp, Zeolites and catalysis, Solid State Ionics, 131(1–2), 175(2000)
[2]J.Coronas, J.Santamaria, The use of zeolite films in small– scale and micro–scale applications, Chemical Engineering Science, 59(22–23), 4879(2004)
[3] M.V.Twigg, J.T.Richardson, Fundamentals and applications of structured ceramic foam catalysts, Industrial & Engineering Chemistry Research, 46(12), 4166(2007)
[4]M.Lacroix, M.Lacroix, P.Nguyen, D.Schweich, C.Pham–Huu, S.Savin–Poncet, Pressure drop measurements and modeling on SiC foams. Chemical Engineering Science, 62(12), 3259(2007)
[5]G.Incera Garrido, F.C.Patcas, S.Lang, B.Kraushaar–Czarnetzki, Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities, Chemical Engineering Science, 63(21), 5202(2008)
[6]F.C.Patcas, G.I.Garrido, B.Kraushaar–Czarnetzki, CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads, Chemical Engineering Science, 62(15), 3984(2007)
[7]JIAO Yilai, YANG Zhenming, CAO Xiaoming, TIAN Chong, SU Dangsheng, ZHANG Jinsong, Preparation of silicalite–1 coating on SiC foam ceramics by support self–transformation, Chinese Journal of Materials Research, 23(5), 458(2009)
[8]矫义来, 杨振明, 曹小明, 田冲, 苏党生, 张劲松, 在泡沫碳化硅载体上自转化合成silicalite--1型沸石晶体, 材料研究学报, 23(5), 458(2009)
[9]R.Szostak, Molecular Sieves: Principles of Synthesis and Identification (London, Thomson Science, 1998) p.77

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.