Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 17-24    
  研究论文 本期目录 | 过刊浏览 |
MoO2微/纳米片的气相合成和光学性能
刘新利;  王世良; 张泉;  邓意达;  贺跃辉
1.中南大学粉末冶金国家重点实验室 长沙 410083
2.中南大学物理科学与技术学院 长沙 410083
3.教育部重点实验室(湘潭大学)低维材料及其应用技术 湘潭 411005
4.上海交通大学金属基复合材料国家重点实验室 上海 200030
Vapor Phase Synthesis and Optic Properties of MoO2 Micro/nanosheet
LIU Xinli1;  WANG Shiliang 1;2;3;  ZHANG Quan1; DENG Yida4;  HE Yuehui1
1.State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083
2.School of Physics Science and Technology; Central South University; Changsha 410083
3.Key Laboratory of Low Dimensional Materials and Application Technology (Xiangtan University); Ministry of Education; Xiangtan 411005
4.State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200030
引用本文:

刘新利 王世良 张泉 邓意达 贺跃辉. MoO2微/纳米片的气相合成和光学性能[J]. 材料研究学报, 2010, 24(1): 17-24.
. Vapor Phase Synthesis and Optic Properties of MoO2 Micro/nanosheet[J]. Chin J Mater Res, 2010, 24(1): 17-24.

全文: PDF(1288 KB)  
摘要: 

以MoO3粉末和石墨为原料, 用气相传输方法制备MoO2微/纳米片, 并对其形貌、结构及光学性能进行了分析和表征。结果表明, 用气相法制备的矩形薄片状MoO2, 长和宽在几微米到几十微米之间, 厚度约为200 nm。MoO2微/纳米片在波长200--300 nm的紫外光范围内有较强的吸收带, 在304.6 nm、343.4 nm和359.6 nm处有较强的发光峰。根据实验分析和热力学理论, 探讨了MoO2微/纳米片的生长机理。

关键词 无机非金属材料  二氧化钼  微/纳米片  光学性能  生长机理    
Abstract

MoO2 micro/nanosheets were synthesized by vapor-deposit process and characterized by XRD, SEM, TEM, UV-Vis and photoluminescence (PL) photometer. The results show that MoO2 micro/nanosheet is rectangle, and the length and width range from several to dozens of micrometers and about 200 nm thick. The MoO2  micro/nanosheets have absorbance peaks between 200–300 nm, and three fluorescent excitations at 304.6, 343.4 and 359.6 nm. The synthesis mechanism of MoO2 micro/nanosheets was discussed based on the experimental results and the thermodynamic computation.

Key wordsinorganic nonmetallic materials         molybdenum dioxide     micro/nanosheet    optics property    growth mechanism
收稿日期: 2009-07-30     
基金资助:

国家自然科学基金资助项目(50825102, 50804057, 50823006, 50721003), 中澳科技合作特别基金项目(50711120183), 湖南省自然科学基金资助项目(08JJ3110), 湘潭大学“低维材料及其应用技术教育部重点实验室”开放课题资助项目(KF0705)。

1 J.Hu, T.W.Odom, C.M.Lieber, Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 32(5), 435(1999)
2 J.J.Auborn, Y.L.Barberio, Lithium intercalation cells without metallic MoO2/LiCoO2 and WO2/LiCoO2, J. Electrochem. Soc., 134(3), 638(1987)
3 G.M.Wallraff, W.D.Hinsberg, Lithographic imaging techniques for the formation of nanoscopic features, Chem. Rev., 99(7), 1801(1999)
4 I.V.Malikov, G.M.Mikhailov, Electrical resistivity of epitaxial molybdenum films grown by laser ablation deposition, Appl. Phys., 82(11), 5555(1997)
5 Zhang S.-L, d’Heurle, F.M,Influence of molybdenum on the formation of C54 TiSi2: template phenomenon versus grain-size effect, Appl. Phys. Lett., 76(14), 1831(2000)
6 Y.K.Liu, C.G.Liang, Z.L.Wang, Y.Z.He, X.L.Lang, M.H.Zhou, Molybdenum film technology for power metal oxide semiconductor field effect transistor gate electrode applications, Jpn. J. Appl. Phys., 39, 3915(2000)
7 Jos´e R.C.Rocha, Lu´?s Kosminsky, Thiago R.L.C.Paix˜a, Mauro Bertotti, Anodic oxidation of nitrite at a molybdenum oxide layer, Electroanalysis, 13(2), 155(2001)
8 K.Galatsis, Y.X.Li, W.Wlodarski, E.Comini, G.Sberveglieri, C.Cantalini, S.Santucci, Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas, Sensors and Actuators B, 83(1-3), 276(2002)
9 J.N.Yao, K.Hashimoto, A.Fujishima, Photochromism induced in an electrolytically Pretreated MoO3 thin film by visible light, Nature, 355, 624(1992)
10 C.Bechinger, S.Ferrere, A.Zaban, J.Sprague, B.A.Gregg, A photoelectrochromic windows and displays, Nature, 383, 608(1996)
11 S.K.Deb, Reminiscences on the discovery of electrochromic phenomena in transition metal oxides, Sol. Energy Mater. Sol. Cells., 39(2-4), 191(1995)
12 P.Birke, W.F.Chu, W.Weppner, Materials for lithium thin-film batteries for application in silicon technology, Solid State Ion, 93(1-2), 1(1996)
13 J.J.Auborn, Y.L.Barberio, Lithium intercalation cells without metallic lithium, J. Electrochem. Soc., 134(3), 638(1987)
14 Y.B.Li, Y.Bando, D.Golberg, K.Kurashima, Field emission from MoO3 nanobelts, Appl. Phys. Lett., 81(26), 5048(2002)
15 Jingguo Liu, Zhengjun Zhang, Chunyu Pan, Ye Zhao, Xin Su, Ya Zhou, Dapeng Yu, Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation, Mater. Lett., 58(29), 3812(2004)
16 Jun Zhou, Ningsheng Xu, Shaozhi Deng, Jun Chen, Juncong She, Zhonglin Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides, synthesis and field emission properties, Adv. Mater., 15(21), 1835(2003)
17 Yubao Li, Yoshio Bando, Quasi-aligned MoO3 nanotubes grown on Ta substrate, Chem. Phys. Lett., 364(5-6), 484(2002)
18 S.Mitra, K.Sridharan, J.Unnam, K.Ghosh, Synthesis of nanometal oxides and nanometals using hot-wire and thermal CVD, Thin Solid Films, 516(5), 798(2008)
19 Latha Kumari, Yuan-Ron Ma, Chai-Chang Tsai, Yi-Way Lin,Sheng Yun Wu, Kai-Wen Cheng ,Yung Liou, X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods, Nanotecnology, 18, 115717(2007)
20 WANG Fan, ZHANG Yuling, WEI Qingshuo, WU Kai, XIE Youchang, Synthesis of MoOx nano-arrays on anodic aluminum oxide template by thermal diffusion, Acta Phys.-Chim. Sin., 20(6), 637(2004)
(王 凡, 张玉玲, 卫庆硕, 吴 凯, 谢有昌, 阳极氧化铝模板上热扩散法制备MoOx纳米阵列, 物理化学学报,   20(6), 637(2004))
21 P.M.Ajayan, O.Stephan, Ph.Redlich, C.Colliex, Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature, 375, 564(1995)
22 B.C.Satishkumar, A.Govindaraj, Manashi Nath, C.N.R.Rao, Synthesis of metal oxide nanorods using carbon nanotubes as templates, J. Mater. Chem., 10, 2115(2000)
23 QI Yanyuan, CHEN Wen, MAI Liqiang, HU Bin, JIN Wei, Synthesis and electrochemical property of MoO3 nanobelts from peroxomolybdic acid sols, Rare Metals, 31(1), 67(2007)
(祁琰媛, 陈文, 麦立强, 胡 彬, 金 伟, 过氧钼酸溶胶制备的MoO3纳米带及其电化学性能研究, 稀有金属,  31(1), 67(2007))
24 LOU Xiongweng, Zeng Huachun, Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium hep tamolybdate terahydrate, Chem. Mater., 14, 4781(2002)
25 Greta R. Patzke, Alexej Michailovski, Frank Krumeich, Reinhard Nesper, Jan-Dierk Grunwaldt, and Alfons Baiker, One-step synthesis of submicrometer fibers of MoO3, Chem. Mater., 16(6), 1126(2004)
26 WANG Wendi, XU Huayun, LIU Jinhua, ZHANG Shouquan, WANG Dazhi, CHEN Chunhua, Hydrothermal synthesis of MoO3 nanobelts and their electrochemical characterization, Functional Materials, 37(3), 434(2006)
(王文帝, 徐化云, 刘金华, 章守权, 王大志, 陈春华, MoO3纳米纤维电极材料的水热合成和化学表征, 功能材料,  37(3), 434(2006))
27 LI Junsheng, ZHAO Peng, YAO Yanyan, TIAN Xiaozhen, Synthesis of strip-shaped nanoscale MoO3 by hydrothermal process, New Chemical Materials, 35(4), 44(2007)
(李军升, 赵 鹏, 姚燕燕, 田晓珍, 水热法制备薄片状纳米级MoO3微粉, 化工新型材料,  35(4), 44(2007))
28 Antonella M. Taurino, Angiola Forleo, Luca Francioso, Pietro Siciliano, Synthesis, electrical, characterization and gas sensing properties of molybdenum oxide nanorods, Appl. Phys. Lett., 88, 1521111(2006)
29 Z.R.Dai, Z.W.Pan, Z.L.Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials, 13(1), 9(2003)
30 A.Katrib, D.Mey, G.Maire, Molybdenum and tungsten dioxides, XO2 (X=Mo, W), as reforming catalysts for hydrocarbon compounds, Catalysis Today, 65(2-4), 179(2001)
31 A.Gulino, S.Parker, F.H.Hones, R.G.Egdell, Influence of metal-metal bonds on electron spectra of MoO2 andWO2, Chem. Soc., Faraday Trans., 92, 2137(1996)
32 Y.G.Liang, S.J.Yang, Z.H.Yi, X.F.Lei, J.T.Sun, Y.H.Zhou, Low temperature synthesis of a stable MoO2 as suitable anode materials for lithium batteries, Mater. Sci. Eng. B, 121, 152(2005)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.