Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 561-571    
  专题评述 本期目录 | 过刊浏览 |
背散射电子衍射在高应变率变形结构研究中的应用
徐永波;  阳华杰 ;  Marc Andre Meyers
1.中国科学院金属研究所 沈阳 110016
2. University of California; San Diego; La Jolla; CA 92093--0411; USA
Application of EBSD in the investigation of the deformation microstructure induced during high–strain rate loading
 XU Yongbo;  YANG Huajie;   M.A.Meyers
1.Institute of Metal Research; Shenyang 110016
2.University of California; San Diego; La Jolla; CA 92093–0411; USA
引用本文:

徐永波 阳华杰 Marc Andre Meyers. 背散射电子衍射在高应变率变形结构研究中的应用[J]. 材料研究学报, 2009, 23(6): 561-571.
. Application of EBSD in the investigation of the deformation microstructure induced during high–strain rate loading[J]. Chin J Mater Res, 2009, 23(6): 561-571.

全文: PDF(2122 KB)  
摘要: 

本文是作者对背散射电子衍射技术在高应变率态载荷下诱发的几种晶体(包括Fe----Cr----Ni单晶、304不锈钢和纳米铜)变形结构演化的最新研究结果, 以及对相关研究进展的简要评述. 具体内容包括: (1)进一步辨认剪切带中再结晶现象, 澄清长期来学者们对该问题看法上的分歧; (2)采用Meyers等提出的结构演化模型对再结晶予以合理的解释; (3)在实验基础上, 根据位错动力学理论, 对局部化过程中再结晶的晶粒生长予以定量描述, 其结果与实验事实吻合.

关键词 材料科学基础学科EBSD高应变率亚结构剪切带动态再结晶    
Abstract

Investigation made by authors into Electron–Backscatter–Diffraction (EBSD) technique and its application in dynamic deformation in Fe–Cr–Ni single crystal, 304 stainless steel and nanocopper is critical reviewed. The results are the following: (1) recrystallization occurring in the shear bands induced during high–strain rates is further clarified; (2) both either static/ dynamic recrystallization is firstly recognized in the shear bands, and this leads to an in–depth understanding of recrystallization mechanism;(3) a grain–boundary rotation model for recrystallization is proposed, and by which the calculation is in good agreement with experimental observation.

 

Key wordsfoundational discipline in materials science    EBSD    high–strain rate    substructures/misorientation, shear bands    dynamic–recrystallization
收稿日期: 2009-05-21     
ZTFLH: 

TG115

 
基金资助:

国家自然科学基金10776032和10902192资助项目.

1 M.A.Meyers, H–r Pak, Observation of an adiabatic shear band in titanium by high voltage transmission electron microscopy, Acta materialia, 34, 2493(1986)
2 U.Andrade, M.A.Meyers, K.S.Vecchio, A.H.Chokshi, Dynamic recrystallization in high–strain, high strain-rate plastic deformation of copper, Acta materialia, 42, 3183(1994)
3 J.A.Hines, K.S.Vecchio, Dynamic recstallization in adiabatic shear bands in shock–load copper, In: Metallurgical and Materials Applications of Shock–Wave and High–Strain–Rate Phenomena, eds. L.E.Murr, K.Staudhammer and M.A.Meyers, 1995, P421
4 V.F.Nwsterenko, M.A.Meyers, Shear localization and recrystallization in high–strain, high–strain–rate deformation of tantalum, Mater. Sci. Eng., A299, 23(1997)
5 C.M Glass, G.M Moss, S.K.Golaski, Response of Metals to High Velocity Deformation, Eds. P. Shewman and V.F. Zackey, New York. 1961, p115 (interscience)
6 M.C.Mataya, M.J.Carr, Flow localization and shear band formation in a precipitation strengthening austenite stainless steel, Metall. Mater. Trans., 13A, 1263(1982)
7 M.A.Meyers, Y.B.Xu, Q.Xue, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Materialia, 51, 1307(2003)
8 Q.Li, Y.B.Xu, A model of dynamic recrystallization in alloys during high strain plastic deformation, J. Mater. Sci. Tech., 15, 435(1999)
9 J.F.C.Lins, H.R.Z.Sandim, A microstructural investigation of adiabatic shear bands in an intersticial steel, Mater. Sci. Eng., 457, 205(2007)
10 Y.B.Xu, Y.L.Bai, L.T.Shen, Formation, microstructure and development of the localized shear deformation in low carbon steels, Acta materialia, 44, 1917–1919(1996)
11 D.R.Chichili, K.T.Ramesh, The high–strain–rate response of alpha–titanium: experiments, deformation mechanisms and modeling, Acta materialia, 46, 1025(1998)
12 Y.B.Xu, M.A.Meyers, Microstructural evolution of shear band induced during explosion in Ti–6Al–4V alloy, J. Mater Sci. Eng., 19, 385(2003)
13 Meyers M.A, Pak H–r. Observation of an adiabatic shear band in titanium by high–voltage transmission electron microscopy. Acta Materialias, 34, 2493(1986)
14 L.E.Murr, C.S.Niou, S.Pappu, LEDS in ultra–high strain rate deformation, Phys Status solids, A149, 235(1995)
15 Q.Li, Y.B.Xu, Dynamic recrystallization induced by plastic deformation at high–strain rate in a model alloy, Mater.Sci. Eng., A276, 250(2000)
16 J.A.Hines, K.S.Vecchio, in Metallurgical and Materials Applications of Shock–Wave and High–Strain– Rate Phenomena, eds. L.E.Hurr, K.Staudhammer and M.A.Meyers, (1995) p.421
17 M.A.Meyers, Y.J.Chen, High–strain–rate behavior of tantalum, Metall. Mater. Trans., 26A, 2493(1995)
18 S.Pappu, C.S.Niou, L.E.Murr, et al, High–strain–rate behavior pf pure tantalum in explosively formed penetrator and shaped charge regimes: in Metallurgical and Materials Application of Shock–Wave and High–Strain Rate Phenomena, L.E.Murr, K.Staundhammer and M.A.Meyers, eds., 1995, p.495
19 L.E.Murr, C.S.Niou, et al, Residual microstrctures in explosively formed in tantalum perpetrators, Script Materialia, 34, 297(1994)
20 V.F.Nwsterenko, M.A.Meyers, Shear localization and recrystallization in high–strain rate deformation of tantalum, Mater.Sci.Eng., A299, 23(1997)
21 Nemat–Nasser, J.B.Isaacs, Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys. Acta Materialia, 45, 907(1997)
22 Y.B.Xu, W.L.Zhong, Y.J.Chen, L.T.Shen, Y.L.Bai, M.A.Meyers, Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy, Mat. Sci. Eng., 299A, 287(2001)
23 Y.B.Xu, Z.Ling, Y.L.Bai, Evolution of thermoplastic shear localization and related microstructures in Al/SiCp composites under dynamic compression, JMST, 18, 504(2002)
24 L.E.Murr, C.Pizana, Dynamic recrystallization: The dynamic deformation regime, Metall. Mater. Trans., 38A, 2611(2007)
25 K.M.Cho, S.G.Lee, S.R.Nutt, J.Duffy, Adiabatic shear band formation during dynamic torsional deformation of an HY–100 steel. Acta mater., 41, 923(1993)
26 A.J.Dedford, A.L.Wingrove, The phenomenon of adiabatic shear deformation, J. Aust. Inst. Met., 19, 61(1974)
27 H.C.Rogers, Adiabatic plastic deformation, Ann. Rev.Mater. Sci., 9, 283(1979)
28 F.J.Humphreys, Characterisation of fine–scale microstructures by EBSD, Script mater., 51, 771(2004)
29 F.J.Humphreys, Review paper: Grain and subgrain characterisation by electron backscatter diffraction, J. Mater. Sci., 36, 3833(2001)
30 A.F.Gourues, Electron backscatter diffraction and cracking, Mater. Sci. Tech., 18, 119(2002)
31 ZHU Jing, Orientation mapping electron microbeam, J. Chinese Electron Microscopy Society, 16, 210(1997)
(朱 静, 取向成像电子微束, 电子显微学报,  16, 210(1997))
32 WANG Maoqiu, SHI Jie, HUIWeijun, DONG Han, EBSD analysis technology and its application in iron and steel, J of Iron and Steel Research, 19, 6(2007)
(王春芳, 时捷, 王毛球, 惠卫军, 董 瀚, EBSD分析技术及其在钢铁材料研究中的应用, 钢铁研究学报,  19, 6(2007))
33 F.J.Humphreys, Quantitative metallography by electron backscattered diffraction J. Microscopy, 195, 170(1999)
34 F.J.Humphreys, Y.Huang, I.Brough, et al, Electron backscatter diffraction of grain and subgrain structures– resolution considerations, J. Microscopy, 195, 212(1999)
35 JIN Li, Mishara R.K, Kubic R, In–situ EBSD analysis on the microstructures during deformation, Proceeding of EBSD Technical and Scienfitic exchange meeting 11–14 Dec. Shanghua, China P2
(靳丽, R.K.Mishara, R.Kubic, 材料变形过程中的原位电子背散射衍射(in--situ EBSD)分析, 2008年全国电子背散射衍射(EBSD)技术学术交流研讨会会议论文集, 2008年, 12月11--14日, 中国上海, P1)
36 YANG Ping, EBSD Technique and its Application, (Beijing, Metallurgy Industrial Press, 2007)
(杨平,  电子背散射衍射技术及其应用 (北京, 冶金工业出版社, 2007)
37 LI Bolong, Quantitative investigation of microstructural evolution during deformation and recrystallization of IF steel, Ph.D Dissertation, Tsinghua University, 2003
(李伯龙, IF钢形变与再结晶过程中微观组织与织构变化的定量研究, 清华大学博士论文, 2003)
38 HKL Technology–Manual : Channel 5 (HKL Technology–Channel 5)
39 Y.B.Xu, Z.G.Wang, Y.L.Bai, L.T.Shen, Microstructure of shear localization in low–carbon steels, Mater. Sci. Eng., A114, 81(1989)
40 L.W.Meyer, S.Manwaring: Metallurgical Application of Shock–Wave and High–Strain Rate Phenemona, Marcel Dekker, New York, NY, 1986, p.657
41 Y.C.Chen, M.A.Meyers, V.F.Nesterenko, Spontaneous and forced shear localization in high–strain–rate deformation of tantalum, Mater. Sci. Eng., A268, 70(1999)
42 M.P.Bondar, V.F.Nesterenko, Contact deformation and bonding criteria under impulsive loading, Combustion Explosion shock waves, 27, 364(1991)
43 Y.B.Xu, J.H.Zhang, Y.L.Bai, M.A.Meyers, Shear localization in dynamic deformation: Microstructural evolution, Metall. Mater. Trans., 39A, 811(2008)
44 YANG Ping, Fu Yunyi, Stress induce phase transformation by EBSD, J. Chinese Electron Microscopy Society, 19, 541(2000)
(杨 平, 付云义等, 利用EBSD技术研究应变诱导相变过程, 电子显微学报,  19, 541(2000))
45 QI Junjie, SUN Zhuqing, Structure and orientation during deformation in low–carbon austenite under cooling, Acta Metall. Sin., 38, 629(2002)
(齐俊杰, 孙祖庆, 低碳钢过冷奥氏体形变过程中的组织及取向变化, 金属学报,  38, 629(2002))
46 LIU Jing, WANG Renhui, CHEN Yufang, Recrystallization structure measurement of IF steel by Kicuchi pattern measurement of EBSD, J. Chinese Electron Microscopy Society, 16, 218(1997)
(刘 静, 王仁卉和陈方玉等, 用背散射电子菊池图测量无间隙钢的再结晶微观结构, 电子显微学报,  16,  218(1997))
47 M.Ueda, H.Y.Yasuda, Y.Umakoshi, Effect of grain boundary character on the martensitic transformation in Fe-32at.%Ni bicrystals. Acta materialia, 49, 3421(2001)
48 M.T.Perez–Parado, J.A.Hinrie, K.S.Vecchio, Microstructural evolution in adiabatic shear band in Ta and Ta–W alloys, Acta materialia. 2001, 49, 2905
49 Q.Xue, J.F.Bingert, B.L.Henrie, G.T.Gray III, Mater.Sci. Eng., EBSD characterization of dynamic shear bands regions shocked and as received stainless steels, 473, 279(2008)
50 F.Martinez, L.E.Murr, A.Ramirey, M.I.Lopez, S.M.Gaytan, Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti–6Al–4V targets, Mater. Sci. Eng., A454 455, 581(2007)
51 Y.B.Xu, H.J.Yang, M.A.Meyers, Dynamic recrystallization in the shear bands of Fe–Cr–Ni monocrystal: Electron backscatter diffraction characterization, Scripta materialia, 58, 691(2008)
52 H.J.Yang, J.H.Zhang, Y.B.Xu, M.A.Meyers, Microstructural Characterization of the Shear bands in Fe–Cr–Ni Single Crystal by EBSD, J. Mater. Sci. Technol., 24, 819(2008)
53 H.J.Yang, Y.B.Xu, M.A.Meyers, Analysis and Characterization by EBSD of Microstructural Evolution in the Adiabatic Shear Bands in Fe–Cr–Ni Alloys, J. Mater. Research.2009 in press
54 YANG Ping, EBSD technique, geometric crystallography and materials science, Proceeding of EBSD Technical and Scienfitic exchange meeting 11–14 Dec. Shanghua, China P1
(杨 平, 电子背散射衍射技术、几何晶体学与材料科学, 2008年全国电子背散射衍射(EBSD)技术学术交流研讨会会议论文集, 2008年, 12月11--14日, 中国上海, P1)
55 J.H.Beatty, L.W.Meyer, U.S.Army, Materials technical Laboratory Report, MTL TR90–54, Septerber, 1991
56 U.Andrade, M.A.Meyers, A.H.Chokshi, Constitutive description of work–hardening and shock hardening copper, Scripta materialia, 30, 933(1994)
57 J.A.Hines, K.S.Vecchio, Recrystallization kinetics within adiabatic shear bands, Acta materialia, 45, 635(1997)
58 V.F.Nwsterenko, M.A.Meyers, Self–organization in the initiation of adiabatic shear bands, Acta materialia, 46, 327(1997)
59 A.Mishra, M.Martin, N.N.Thadhani, B.K.Kad, E.A.Kenik, M.A.Meyers, High–strain–rate response of ultra–fine–grained copper, Acta materialia, 56, 2770(2008)
60 XU Yongbo, BAI Yilong, Shear localization, microstructure evolution and fracture under high–strain rate, Advances in Mechanics, 4, 496(2007)
(徐永波, 白以龙, 动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展, 力学进展,  37, 496(2007))
61 Y.B.Xu, Y.L.Bai, M.A.Meyers, Deformation, phase transformation and recrystallization in the shear bands induced by high–strain rate loading in titanium and its alloys, J. Mater. Sci. Tech., 22, 737–746(2006)
62 M.A.Meyers, J.C.LaSalvia, V.F.Nesterenko, In: McNelley, editor. Recrystallization and related phenomena. Monterey, 1979, p.27
63 B.B.Rath, H.Hu, In: H.Hu editor. Nature and Behavior of Grain Boundaies. Plenum Press, new York, 1972 p.405
64 LI Qian, Dynamic Behavior, Plastic deformation localization and Formation of Ultrafine Grain Structures in Metallic Materials, Post–Doctorial Research Report, Institute of Metal Research, Chinese Academy of Sciences, 1999
(李 强, 金属材料动态力学行为、塑性变形局部化与组织超细研究, 博士后研究工作报告, 中国科学院金属研究所, 1999年2月)

[1] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[4] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[5] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[7] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[8] 袁强强, 汪志刚, 江永芳, 张迎晖, 黄安康, 叶洁云. 温轧温度对Cr-Ti-B系低碳钢组织与织构的影响[J]. 材料研究学报, 2022, 36(2): 81-89.
[9] 崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
[10] 刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
[11] 刘超, 王鑫, 门月, 张浩宇, 张思倩, 周舸, 陈立佳, 刘海建. Ti-6Al-4V合金热压缩过程中的动态再结晶[J]. 材料研究学报, 2021, 35(8): 583-590.
[12] 孙贺, 陈明, 程明, 王瑞雪, 王旭, 胡小东, 赵红阳, 巨东英. 基于多尺度模型的镁合金薄板温轧再结晶和织构[J]. 材料研究学报, 2021, 35(5): 339-348.
[13] 杨靖丞, 王立忠, 钟志平, 郑英俊. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292.
[14] 苏楠, 陈明和, 谢兰生, 罗峰, 史文祥. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021, 35(3): 201-208.
[15] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.