Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 572-576    
  研究论文 本期目录 | 过刊浏览 |
VGCF的表面处理对VGCF/SMPU复合材料力学和热学性能的影响
傅雅琴1; 韩春韶1; 倪庆清2; 朱曜峰1; 丁艳杰1
1.浙江理工大学先进纺织材料与制备技术教育部重点实验室 杭州 310018
2.信州大学纤维学部机能机械学科 长野 日本 386-8567
Effects of surface treatment of VGCF on the mechanical and thermal properties of the VGCF/SMPU composites
FU Yaqin1; HAN Chunshao1;   NI Qingqing2;   ZHU Yaofeng 1;  DING Yanjie1
1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education; Zhejiang Sci-Tech University; Hangzhou 310018
2.Dept. of Functional Machinery & Mechanics; Shinshu University; Ueda 386-8567; Japan
引用本文:

傅雅琴 韩春韶 倪庆清 朱曜峰 丁艳杰. VGCF的表面处理对VGCF/SMPU复合材料力学和热学性能的影响[J]. 材料研究学报, 2009, 23(6): 572-576.
, , , , . Effects of surface treatment of VGCF on the mechanical and thermal properties of the VGCF/SMPU composites[J]. Chin J Mater Res, 2009, 23(6): 572-576.

全文: PDF(1015 KB)  
摘要: 

用二步法对气相生长碳纤维(VGCF)进行表面改性处理, 然后用溶液混合法制备了VGCF/形状记忆聚氨酯(SMPU)复合材料. 用扫描电镜观察分析了VGCF在SMPU基体中的分散性以及与基体的界面结合情况, 研究了复合材料的力学性能和热学性能. 结果表明:与未经二步法处理的VGCF相比, 用二步法表面处理使VGCF在基体中的分散性及与基体的界面结合能力得到较大的提高, 且使其对复合材料的拉伸强度及拉伸弹性模量的增强效果更为明显; 虽然SMPU与VGCF复合后的断裂伸长率有所降低, 但是与未处理的VGCF制备的复合材料相比, 断裂伸长率有明显增大; 表面处理的VGCF更有利于提高复合材料的热稳定性.

关键词 复合材料VGCF/SMPU复合材料表面处理气相生长碳纤维形状记忆聚氨酯    
Abstract

Surface modification of vapor grown carbon fiber (VGCF) was performed with the two-step method. VGCF/shape memory polyurethane (SMPU) composites were prepared via a solutionmixing method thereafter. The dispersion of VGCF in SMPU and VGCF-matrix interfacial adhesion were observed through scanning electron microscope (SEM). Moreover, the mechanical and thermal properties of the VGCF/SMPU composites were investigated. The results show that the dispersion and interfacial adhesion for the two-step surface modified VGCF are greatly improved than that of the pristine VGCF; The composites prepared with two-step surface modified VGCF have much better tensile strength and modulus reinforcement than that with the pristine VGCF. The elongation at break of the composites are all reduced after compounding of VGCF and SMPU, while the surface modified VGCF reinforced composites show higher elongation at break comparing with the pristine VGCF reinforced composites; The two-step surface modified VGCF is propitious to improve the thermal stability of the composites comparing with the pristine VGCF.

Key wordscomposites    VGCF/SMPU composites    surface modification    vapor grown carbon fiber    shape memory polyurethane
收稿日期: 2009-01-16     
ZTFLH: 

TQ327.3

 
基金资助:

教育部长江学者和创新团队发展计划IRT0654资助项目.

1 S.Ota, Current status of irradiated heat shrinkable tubing, Radiation Physics and Chemistry, 18(1-2), 81(1981)
2 S.Hayashi, P.Kapadia, E.Ushioda, Room-temperaturefunctional shape-memory polymers, Plastics Engineering, 51(2), 29(1995)
3 C.Liang, C.A.Rogers, E.Malafeew, Investigation of shape memory polymers and their hybrid composites, Journal  of Intelligent Material Systems and Structures, 8(4), 380(1997)
4 T.Takahashi, N.Hayashi, S.Hayashi, Structure and properties of shape-memory polyurethane block copolymers, Journal of Applied Polymer Science, 60(7), 1061(1996)
5 B.S.Lee, B.C.Chun, Y.C.Chung, I.S.Kyung, J.W.Cho, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect, Macromolecules, 34(18), 6431(2001)
6 CHEN Xiaohong, SHEN Zengmin, Study on the physical properties of vapor grown carbon fiber and its reinforced composites, Carbon Technigues, 104(6), 18(1999)
(陈晓红, 沈曾民, 气相生长炭纤维的物理性能及其作为复合材料增强体的研究, 炭素技术,  104(6), 18(1999))
7 GAO Lian, LIU Yangqiao, Dispersion and surface modification of carbon nanotubes, Bulletin of the Chinese Ceramic Society, 34(5), 114(2005)
(高濂, 刘阳桥, 碳纳米管的分散及表面改性, 硅酸盐通报,  24(5), 114(2005))
8 Xia Hesheng, Song Mo, Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites, Journal of Materials Chemistry, 16(19), 1843(2006)
9 S.T.Huxtable, D.G.Cahill, S.Shenogin, L.Xue, R.Ozisik, P.Barone, M.Usrey, M.S.Strano, G.Siddons, M.Shim, P.Keblinski, Interfacial heat flow in carbon nanotube suspensions, Nature Materials, 2(11), 731(2003)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.