Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 201-208    DOI: 10.11901/1005.3093.2020.196
  研究论文 本期目录 | 过刊浏览 |
TC2钛合金的动态力学特征及其本构模型
苏楠, 陈明和(), 谢兰生, 罗峰, 史文祥
南京航空航天大学 直升机传动技术重点实验室 南京 210016
Dynamic Mechanical Characteristics and Constitutive Model of TC2 Ti-alloy
SU Nan, CHEN Minghe(), XIE Lansheng, LUO Feng, SHI Wenxiang
National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

苏楠, 陈明和, 谢兰生, 罗峰, 史文祥. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021, 35(3): 201-208.
Nan SU, Minghe CHEN, Lansheng XIE, Feng LUO, Wenxiang SHI. Dynamic Mechanical Characteristics and Constitutive Model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021, 35(3): 201-208.

全文: PDF(15540 KB)   HTML
摘要: 

使用电子万能试验机和分离式Hopkinson压杆分别测量TC2钛合金的准静态和动态应变下的应力-应变曲线,并结合显微组织的变化研究了高应变率下的动态流动应力特征。结果表明:应变率为1100-6000 s-1时TC2钛合金具有一定的应变率敏感性,随着应变率的提高显示出明显的应变率增强和增塑效应,但是应变率超过4800 s-1后二者均减弱;在应变率为2500 s-1的试样中观察到与加载方向约成45°角的绝热剪切线,随着应变率的进一步提高出现剪切带,但是由于弥散的β颗粒相滑移聚集形成了阻拦带而没有明显增宽。用绝热温升项修正了Johnson-Cook本构模型,进行非线性拟合构建了TC2钛合金在室温下的动态塑性本构关系,统计分析了预测数据和实验数据,2.18%的平均相对误差和0.9935的相关系数说明改进的模型较好地描述了TC2钛合金在室温高应变速率条件下的流变行为。

关键词 材料力学TC2钛合金Johnson-Cook本构模型高应变率绝热剪切    
Abstract

The quasi-static and dynamic stress-strain curves of TC2 Ti-alloy were measured by means of electronic universal testing machine and split Hopkinson pressure bar (SHPB) respectively, and the dynamic flow stress characteristics at high strain rates were investigated, meanwhile, the relevant microstructure evolution of the alloy was examined. The results show that the strain induced effect of strengthening and plasticizing for TC2 Ti-alloy is sensitive to strain rates obviously in the range of 1100- 6000 s-1, but the two effects were weakened for the strain rate above 4800 s-1. An adiabatic shear line at an angle of about 45° from the loading direction was observed in the samples by strain rate of 2500 s-1, and a shear bands may appear as the strain rate further increases, however which were not significantly widened due to the presence of the blocking zone, resulted from the slippage and agglomeration of the dispersed β particulates. The Johnson-Cook constitutive model was modified with the term of adiabatic temperature rise, then a new model was built by means of non-linear fitting. By comparison of prediction data with experimental data, it follows that the average relative error and the correlation coefficient are 2.18% and of 0.9935 respectively for the above two group data. As a result of the foregoing, the rheological behavior of TC2 Ti-alloy by high strain rate at room temperature can be described well with this improved model.

Key wordsmaterial mechanics    TC2 titanium alloy    Johnson-Cook constitutive model    high strain rate    adiabatic shear
收稿日期: 2020-05-27     
ZTFLH:  TG146.23  
基金资助:中国航空科学基金(20153021001)
作者简介: 苏楠,男,1989年生,博士生
AlMnFeCNTi
3.891.40.080.100.005Bal.
表1  TC2钛合金的化学成分
图1  TC2钛合金的原始显微组织
图2  不同应变率下试样变形前后的图片
图3  TC2钛合金准静态和高应变率下的应力-应变 曲线

Strain rate

/s-1

Yield strength,σ0.2/MPa

Ultimate strength,

σb/MPa

Maximum strain, εmax
0.001703.6899.20.170
0.01762.9906.40.154
0.1790.4944.70.142
1803.2913.70.128
1100658.31148.30.079
1900693.81285.90.137
2500759.81378.10.182
3500809.11434.90.242
4200880.31457.10.289
4800903.51473.60.309
5400925.51500.10.309
6000942.31504.70.312
表2  TC2钛合金在高应变率下的性能参数
图4  高应变率下TC2钛合金的微观组织
图5  不同应变下流动应力差值及其相对增加率
图6  TC2钛合金的对数应变率敏感系数拟合
StrainStrain rate sensitivity λ/MPa
0.0646.3
0.0854.2
0.1058.1
0.1457.8
0.1861.7
0.2050.7
0.2263.5
表3  TC2钛合金在定应变下的对数应变率敏感系数
图7  TC2钛合金高应变率下的绝热温升
图8  TC2钛合金在高应变速率下?T与ε的关系
图9  ??T/?ε与ε˙的抛物线函数拟合
图10  Johnson-Cook模型拟合结果与实验数据的相关度
1 Zhang T, Li Q, He L, et al. Research on hot forming of abnormity part of titanium alloy TC2 [J]. Aeronautical Manufacturing Technology, 2011, (16): 57
1 张涛, 李琦, 何露等. TC2钛合金异型件热成形工艺研究[J]. 航空制造技术, 2011(16): 57
2 Wang X G. Research on the hot forming properties of hydrogenated TC2 titanium alloy sheet [D]. Harbin: Harbin Institute of Technology, 2015
2 王星光. 置氢TC2钛合金板材热成形性能研究 [D]. 哈尔滨工业大学, 2015
3 Li Y, Pei Z, Zaman B, et al. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater [J]. Mater. Res. Express. 2018, 5(11651611)
4 Tang J, Yang X K, Wang X, et al. Effects of cold deformation rate on microstructure and properties of annealed TC2 titanium alloy sheet [J]. Hot Working Technology, 2015, 44(11): 120
4 唐进, 杨晓康, 王兴等. 冷变形率对退火态TC2钛合金薄板组织和性能的影响 [J]. 热加工工艺, 2015, 44(11): 120
5 Peng P, Wang Q J, Li H, et al. Effect of annealing temperature on texture and stamping property of TC2 titanium alloy [J]. Heat Treatment of Metals, 2017, 42(01): 72
5 彭湃, 王庆娟, 李辉等. 退火温度对TC2钛合金织构与冲压性能的影响 [J]. 金属热处理, 2017, 42(01): 72
6 Wu F. Effect of annealing temperatures on microstructure and hardness of TC2 titanium alloy sheet [J]. Heat Treatment, 2019, 34(04): 36
6 吴钒. 退火温度对TC2钛合金板材的组织和硬度的影响 [J]. 热处理, 2019, 34(04): 36
7 Wang B, Gong S, Chen L, et al. Microstructure and mechanical properties of TC2 titanium alloy laser welded joints [J]. Rare Metal Mat. Eng.. 2013, 422: 136
8 Zong Y Y, Shao B, Wang X, et al. Effect of hydrogen on phase transformation, thermal deformation behavior, and forming limit of TC2 alloy [J]. Adv. Eng. Mater.. 2018, 20(180069011)
9 Yang X K, Kang Y, Wang X, et al. Effect of cooling rates on microstructure of TC2 titanium alloy plate quenched above the β-transus temperature [J]. Titanium Industry Progress. 2014, 31(01): 25
9 杨晓康, 康彦, 王兴等, 唐进. 冷却速度对TC2钛合金板材β淬火组织的影响 [J]. 钛工业进展, 2014, 31(01): 25
10 Dai Q F, Song R B, Cai H J, et al. Tensile mechanical behavior of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates [J]. Chin. J. Mater. Res., 2013, 27(01): 25
10 代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能 [J]. 材料研究学报, 2013, 27(01): 25
11 Han G Q, Xie L S, Chen M H, et al. Flow stress characteristics and constitutive relation of Ti2AlNb alloy under high strain rate [J]. Rare Metal Mat. Eng., 2019, 48(03): 847
11 韩国强, 谢兰生, 陈明和等. Ti2AlNb合金高应变率下流动应力特征与本构关系 [J]. 稀有金属材料与工程, 2019, 48(03): 847
12 Liu Q H, Hui S X, Ye W J, et al. Dynamic mechanical properties of TC4 ELI titanium in different microstructure states [J]. Rare Metals, 2012, (4): 9
12 刘清华, 惠松骁, 叶文君等. 不同组织状态TC4 ELI钛合金动态力学性能研究 [J]. 稀有金属, 2012, (4): 9
13 Ran C, Chen P, Li L, et al. High-strain-rate plastic deformation and fracture behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy at room temperature [J]. Mech. Mater.. 2018, 116: 3
14 Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng. Fracture Mechanics, 1985, 21(1): 31
15 Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. J APPL PHYS., 1987, 61(5): 1816
16 Voyiadjis G Z, Abed F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mech. Mater., 2005, 37(2/3): 355
[1] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[2] 李沐泽, 柏春光, 张志强, 赵建, 徐东生, 王岩峰. TC2钛合金的高温热变形行为[J]. 材料研究学报, 2020, 34(12): 892-904.
[3] 徐永波 阳华杰 Marc Andre Meyers. 背散射电子衍射在高应变率变形结构研究中的应用[J]. 材料研究学报, 2009, 23(6): 561-571.
[4] 李强;马常祥;赖祖涵;尹立新;刘浩;王幼筠. 30MnCrNiMoB钢绝热剪切与动态再结晶[J]. 材料研究学报, 1997, 11(1): 42-46.
[5] 唐长国;朱金华;周惠久. 金属材料拉伸的高应变率增塑现象及分析[J]. 材料研究学报, 1996, 10(1): 19-24.
[6] 杨扬;张新明;李正华;李青云. 高应变率下α—Ti的一种特殊超塑变形行为[J]. 材料研究学报, 1995, 9(4): 317-320.
[7] 杨扬;张新明;李正华;李青云. α-Ti-低碳钢爆炸复合结合层的组织[J]. 材料研究学报, 1995, 9(2): 186-189.