Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 458-465    
  研究论文 本期目录 | 过刊浏览 |
在泡沫碳化硅载体上自转化合成silicalite--1型沸石晶体
矫义来;  杨振明;  曹小明;  田冲;  苏党生;  张劲松
中国科学院金属研究所  沈阳 110016
Preparation of silicalite–1 coating on SiC foam ceramics by support self–transformation
JIAO Yilai;  YANG Zhenming;  CAO Xiaoming ; TIAN Chong;  SU Dangsheng;  ZHANG Jinsong
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

矫义来 杨振明 曹小明 田冲 苏党生 张劲松. 在泡沫碳化硅载体上自转化合成silicalite--1型沸石晶体[J]. 材料研究学报, 2009, 23(5): 458-465.
. Preparation of silicalite–1 coating on SiC foam ceramics by support self–transformation[J]. Chin J Mater Res, 2009, 23(5): 458-465.

全文: PDF(1461 KB)  
摘要: 

以泡沫碳化硅载体内的残余硅为硅源, 在泡沫碳化硅载体上自转化合成silicalite--1型沸石晶体. 用残余硅含量为16.7%的泡沫碳化硅作为载体, 可制备出负载均匀、耐热性好、抗热冲击、比表面积为36 m2g-1的silicalite--1型沸石晶体/泡沫碳化硅复合材料. 研究了泡沫碳化硅载体的残余硅含量和水热合成溶液的组成等因素对沸石晶体的自转化合成及其形貌的影响. 结果表明, 泡沫碳化硅载体中的残余硅含量是影响沸石晶体层结晶的关键因素. 当载体中硅的含量过低时, 溶液中的硅酸根浓度过低, 不具备形成沸石晶体的条件; 而当载体中硅的含量过高时, 溶液中的硅酸根浓度过高, 沸石晶体优先在残余硅的表面形核, 随着这些硅的溶解, 在其上形成的沸石晶体也随之脱落. 增加模板剂的含量可促进沸石晶体形核, 从而使沸石晶体的尺寸变小.

关键词 无机非金属材料复合材料自转化合成泡沫碳化硅silicalite--1型沸石晶体    
Abstract

Silicalite–1 coating on SiC foam ceramic was prepared by support self–transformation method using the residual silicon as silicon source. Silicalite–1/SiC foam composite with a specific surface area of 36 m2g−1 and homogeneous coverage and good thermal mechanical stability and good heat shock stability was fabricated on the SiC foam supports with a residual silicon amount of 16.7%. The influences of residual silicon amount in the supports, synthesis time and composition of the synthesis solution on the loading and morphology of the zeolite layer were investigated. It is found that the residual silicon amount is the key parameter to zeolite crystallization. Zeolite nucleus can not form on the SiC foam ceramic supports with too low amount of residual silicon, but can form on the residual silicon first when the amount is too high, which will make the zeolite crystal detached from the support during the subsequent silicon dissolution. In addition, increasing the template concentration can promote zeolite nucleation and
reduce the size of zeolite crystals.

Key wordsinorganic non–metallic materials    composites    support self–transformation    SiC foam    silicalite–1 zeolite
收稿日期: 2009-05-04     
ZTFLH: 

TB321

 
基金资助:

国家863计划十一五新材料领域重点资助项目2007AA030205.

1 J.Weitkamp, Zeolites and catalysis, Solid State Ionics, 131(1–2), 175(2000)
2 J.Coronas, J.Santamaria, The use of zeolite films in small–scale and micro–scale applications, Chemical Engineering Science, 59(22–23), 4879(2004)
3 J.E.Antia, R.Govind, Applications of binderless zeolite–coated monolithic reactors, Applied Catalysis A: General, 131(1), 107(1995)
4 M.V.Twigg, J.T.Richardson, Fundamentals and applications of structured ceramic foam catalysts, Industrial & Engineering Chemistry Research, 46(12), 4166(2007)
5 M.Lacroix, M.Lacroix, P.Nguyen, D.Schweich, C.Pham–Huu, S.Savin–Poncet, Pressure drop measurements and modeling on SiC foams, Chemical Engineering Science, 62(12), 3259(2007)
6 G.Incera Garrido, F.C.Patcas, S.Lang, B.Kraushaar–Czarnetzki, Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities, Chemical Engineering Science, 63(21), 5202(2008)
7 F.C.Patcas, G.I.Garrido, B.Kraushaar–Czarnetzki, CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads, Chemical Engineering Science, 62(15), 3984(2007)
8 F.C.Buciuman, B.Kraushaar–Czarnetzki, Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts, Catalysis Today, 69(1–4), 337(2001)
9 G.B.F.Seijger, O.L.Oudshoorn, W.E.J.van Kooten, J.C.Jansen, H.van Bekkum, C.M.van den Bleek, H.P.A.Calis, In situ synthesis of binderless ZSM–5  zeolitic coatings on ceramic foam supports, Microporous and Mesoporous Materials, 39(1–2), 195(2000)
10 G.Win´e, J.P.Tessonnier, S.Rigolet, C.Marichal, M.J.Ledoux, C.Pham–Huua, Beta zeolite supported on a β–SiC foam monolith: A diffusionless catalyst for fixed–bed Friedel–Crafts reactions, Journal of Molecular Catalysis A: Chemical, 248(1–2), 113(2006)
11 M.Rauscher, T.Selvam, W.Schwieger, D.Freude, Hydrothermal transformation of porous glass granules into ZSM–5 granules, Microporous and Mesoporous Materials, 75(3), 195(2004)
12 A.Zampieri, S.Kullmann, T.Selvam, J.Bauer, W.Schwieger, H.Sieber, T.Fey, P.Greil, Bioinspired rattan–derived SiSiC/zeolite monoliths: Preparation and Characterisation, Microporous and Mesoporous Materials, 90(1–3), 162(2006)
13 Y.Y.Wang, G.Q.Jin, X.Y.Guo, Growth of ZSM–5 coating on biomorphic porous silicon carbide derived from durra, Microporous and Mesoporous Materials, 118(1–3), 302(2009)
14 W.Wei, X.M.Cao, C.Tian, J.S.Zhang, The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics, Microporous and Mesoporous Materials, 112(1–3), 521(2008)
15 J.M.Zamaro, M.A.Ulla, E.E.Mir´o, Zeolite washcoating onto cordierite honeycomb reactors for environmental applications, Chemical Engineering Journal, 106(1), 25(2005)
16 H.Katsuki, S.Furuta, Formation of novel ZSM–5/porous mullite composite from sintered kaolin honeycomb by hydrothermal reaction, Journal of the American Ceramic Society, 83(5), 1093(2000)

 

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[13] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[15] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.