Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 449-457    
  专题评述 本期目录 | 过刊浏览 |
量子点太阳电池的探索
彭英才1; 傅广生2
1.河北大学电子信息工程学院 保定 071002
2.河北大学物理科学与技术学院 保定 071002  
Approach to quantum dot solar cells
PENG Yingcai1 ;  FU Guangsheng2
1.College of Electronic and Informational Engineering; Hebei University; Baoding 071002
2.College of Physical Science and Technology; Hebei University; Baoding 071002  
引用本文:

彭英才 傅广生. 量子点太阳电池的探索[J]. 材料研究学报, 2009, 23(5): 449-457.
. Approach to quantum dot solar cells[J]. Chin J Mater Res, 2009, 23(5): 449-457.

全文: PDF(1239 KB)  
摘要: 

阐述了探索量子点太阳电池的重要意义与物理构想, 简要介绍了两种不同结构组态的量子点太阳电池的光伏性能, 如p--i--n量子点太阳电池和量子点敏化太阳电池. 对发生在各种量子点(PbSe、PbS、PbTe、CdSe和Si)中的因碰撞电离而导致的多激子产生效应及其研究进展进行了重点评述, 并提出了设计与制作量子点太阳电池的若干技术对策. 可以预期, 具有超高能量转换效率、低制作成本与高可靠性的量子点太阳电池的实现,
有可能对未来的光伏技术与产业产生革命性的影响.

关键词 无机非金属材料量子点结构综述多激子产生太阳电池技术对策    
Abstract

The importance and physical conception to achieve quantum dot solar cells are expounded, and the photovoltaic performances of two configuration quantum dot solar cells are described, such as p–i–n quantum dot solar cells and quantum dot–sensitized solar cells. The multiple exciton generation in various quantum dots based on impact ionization and their studied progress are reviewed. Finally, some technology strategy to design and fabricate quantum dot solar cells was proposed. It can be predicated that the achievement of the quantum dot solar cells with ultrahigh energy conversion efficiency, low fabricated cost and high stability shall create revolutionary influence for futural photovoltaic technology and industry.

Key wordsinorganic non--metallic materials    quantum dot structures    reviews    multiple exciton generation    solar cells    technology strategy
收稿日期: 2009-03-20     
ZTFLH: 

TB321

 
基金资助:

河北省自然科学基金资助项目E2008000626.

1 J.K.Rath, Low temperature polycrytalline silicon: a review on deposition, physical properties and solar cell applications, Solar Energy Materials & Solar Cells, 76, 431(2003)
2 LI Ligui, LU Guanghao, YANG Xiaoniu, ZHOU Enle, Progress of polymer solar cells, Chinese Science Bulletin 51(21), 2457(2006)
(黎立桂, 鲁广昊, 杨小牛, 周恩乐, 聚合物太阳电池研究进展, 科学通报,  51(21), 2457(2006))
3 HE Yuliang, DING Jianning, PENG Yingcai, GAO Xiaoni, New aspects of silicon thin–film solar cells, Chinese J. Physics, 37(12), 862(2008)
(何宇亮, 丁建宁, 彭英才, 高晓妮,  对硅薄膜型太阳电池的一些思考, 物理,  37(12), 862(2008))
4 M.Gr¨atzl, Solar energy conversion by dye–sensitized photovoltaic cell, Inorganic Chemistry, 44(20), 6841(2005)
5 V.Popescu, G.Bester, M.C.Hanna, A.G.Norman, A.Zunger, Theoretical and experimental examination of the intermediate–band concept for strain–balanced (In, Ga) As/Ga(As, P) quantum dot solar cells, Phys. Rev., 78(20), 205321(2008)
6 M.C.Hanna, A.J.Nozik, Solar conversion efficiency of photovolatic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100(7), 074510(2006)
7 A.J.Nozik, Quantum dot solar cells, Physica, E14, 115(2002)
8 T.Trupke, M.A.Green, P.W¨urfel, Improving solar cell efficienciens by down–conversion of high– energy photons, J. Appl. Phys., 92(3), 1668(2002)
9 R.D.Schaller, V.I.Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion, Phys. Rev. Lett., 92(18), 186601(2004)
10 V.Aroutiounian, S.Petrosyan, A.Khachatryan, A.Khachatryan, K.Touryan, Quantum dot solar cells, J. Appl. Phys., 89(4), 2268(2001)
11 G.D.Wei, S.R.Forrest, Intermediate–band solar cells employing quantum dots embedded in an energy fence barrier, Nano Lett., 7(1), 218(2007)
12 A.Marti, N.Lopez, E.Antolin, E.Canovas, A.Luque, C.R.Stanley, Emitter degradation in quantum dot intermediate band solar cells, Appl. Phys. Lett., 90(23), 233510(2007)
13 R.B.Laghumavarapu, M.El–Emawy, N.Nuntawong, A.Moscho, L.F.Lester, D.L. Huffaker, Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers, Appl. Phys. Lett., 91(24), 243115(2007)
14 C.D.Cress, S.M.Hubbard, B.J.Landi, R.P.Raffaelle, D.M.Wilt, Quantum dot solar cell tolerance to alpha–particle irradiation, Appl. Phys. Lett., 91(18), 183108(2007)
15 R.B.Laghunavarapu, A.Moscho, A.Khoshakhlagh, M.E.Emawy, L.F.Lester, D.L.huffaker, GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response, Appl. Phys. Lett., 90(17), 173125(2007)
16 PENG Yingcai, S.Miyazaki, XU Jun, Chinese J. Vac. Sci. Technol., 29(4), 411(2009)
(彭英才, Miyazaki S, 徐 骏, TiO2纳米结构及其在染料敏化太阳电池中的应用, 真空科学与技术学报,   29(4), 411(2009))
17 S.C.Lin, Y.L.Lee, C.H.Chang, Y.J.Shen, Y.M.Yang, Quantum dot sensitized solar cells: assembled monolayer and chemical bath deposition, Appl. Phys. Lett., 90(14), 143517(2007)
18 C.H.Chang, Y.L.Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum dot sensitized solar cells, Appl. Phys. Lett., 91(5), 053503(2007)
19 Y.J.Shen, Y.L.Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications, Nanotechnology, 19, 045602(2008)
20 L.J.Diguna, Q.Shen, J.Kobayashi, T.Toyoda, High efficiency of CdSe quantum dot sensitized TiO2 inverse opal solar cells, Appl. Phys. Lett., 91(2), 023116(2007)
21 Q.Shen, D.Arae, T.Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates, Photochemistry and Photobiology A: Chemistry, 164, 75(2004)
22 K.S.Leschkies, R.Divakar, J.Basu, E.E.Pommer, J.E.Boercker, C.B.Carter, Photosensiti– zation of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano lett., 7, 1793(2007)
23 R.Loef, A.J.Houtepen, E.Talgorn, J.Schoonman, A.Goossens, Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells, Nano Lett., 9(2), 856(2009)
24 G.Allan, C.Delerue, Role of impact ionization in multiple exciton generation in PbSe nanocrystals, Phys. Rev., B73(20), 205423(2006)
25 V.I.Rupasov, V.I.Klimov, Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states, Phys. Rev., B76(12), 125321(2007)
26 R.D.Schaller, M.Sykora, V.I.Klimov, J.M.Pietrya, Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., 6(3), 424(2006)
27 R.J.Ellingson, M.C.Bead, J.C.Johnson, P.R.Yu, O.I.Micic,A.J.Nozik, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett., 5(5), 865(2005)
28 A.Shabaev, A.L.Efros, A.J.Nozik, Multiexciton generation by a single photon in nanocrystals, Nano Lett., 6(12), 2856(2006)
29 J.E.Murphy, M.C.Beard, A.J.Nozik, A.G.Norman, S.P.Ahrenkiel, PbTe colloidal nanocrystals: Synthesis, characterization and multiple exciton generation, J.Am. Chem. Soc., 128(10), 3241(2006)
30 M.Califano, A.Zunger, A.Franceschetti, Direct carrier multiplication due to inverse auger scattering in CdSe quantum dots, Appl. Phys. Lett., 84(13), 2409(2004)
31 R.D.Schaller, V.M.Agranovich, V.I.Klimov, High–efficiency carrier multiplication through direct photogeneration of mulitiexcitons via virtual single–exciton states, Nature Physics, 1, 189(2005)
32 M.C.Beard, K.P.Knutsen, P.Yu, J.M.Luther, Q.Songet, W.K.Metzger, A.J.Nozik, Multiple exciton generation in colloidal silicon  anocrystals, Nano Lett., 7(8), 2506(2007)
33 D.Timmerman, I.Izeddin, P.Stallinga, I.N.Yassievich, T.Gregorkiewicz, Space–separated quantum cutting with silicon nanocrystals for photovoltaic applications, Natrue Photonics, 2, 105(2008)
34 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Progress of Si–based nanometer luminescent materials, Chinese Science Bulletin, 47(10), 721(2002)
(彭英才, Zhao X W, 傅广生, Si基纳米发光材料的研究进展, 科学通报,  47(10), 721(2002))
35 M.Sykora, M.A.Petruska, J.A.Aceved, J.A.Acevedo, I.Bezel, T.J.Meyer, V.I.klimov, Photoinduced charge transfer between CdSe  anocrystal quantum dots and Ru–polypyridine complexes, J. Am. Chem. Soc., 128(31), 9984(2006)
36 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Self–assembled growth of ordered Si–based nanometer luminescent materials, Chinese J. Materials Research, 18(5), 449(2004)
(彭英才, Zhao X W, 傅广生, 晶粒有序Si基纳米发光材料的自组织化生长, 材料研究学报, 18(5), 449(2004))
37 ZHANG Lide, MU Jimei, Nanometer Materials and Nanometer Structures (Beijing, The Press of Science, 2002) p.124
(张立德, 牟季美,   纳米材料与纳米结构 (北京, 科学出版社, 2002) p.124)
38 WANG Zhanguo, CHEN Yonghai, YE Xiaoling, Nanometer Semiconductor Technology (Beijing, The Press of Chemical Industry, 2006) p.66
(王占国, 陈涌海, 叶小玲,   纳米半导体技术 (北京, 化学工业出版社, 2006) p.66)
39 D.L.Nika, E.P.Pokatilov, Q.Shav, A.A.Balandin, Charge–carrier states and light absorption in ordered quantum dot superlattices, Phys. Rev., B76(12), 125417(2007)
40 J.S.Sousa, J.A.K.Freire, G.A.Farias, Exciton escape in CdSe core–shell quantum dots: Implications for the development of nanocrystal solar cells, Phys. Rev., B76(15), 155317(2007)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.