1 J.K.Rath, Low temperature polycrytalline silicon: a review on deposition, physical properties and solar cell applications, Solar Energy Materials & Solar Cells, 76, 431(2003)
2 LI Ligui, LU Guanghao, YANG Xiaoniu, ZHOU Enle, Progress of polymer solar cells, Chinese Science Bulletin 51(21), 2457(2006)
(黎立桂, 鲁广昊, 杨小牛, 周恩乐, 聚合物太阳电池研究进展, 科学通报, 51(21), 2457(2006))
3 HE Yuliang, DING Jianning, PENG Yingcai, GAO Xiaoni, New aspects of silicon thin–film solar cells, Chinese J. Physics, 37(12), 862(2008)
(何宇亮, 丁建宁, 彭英才, 高晓妮, 对硅薄膜型太阳电池的一些思考, 物理, 37(12), 862(2008))
4 M.Gr¨atzl, Solar energy conversion by dye–sensitized photovoltaic cell, Inorganic Chemistry, 44(20), 6841(2005)
5 V.Popescu, G.Bester, M.C.Hanna, A.G.Norman, A.Zunger, Theoretical and experimental examination of the intermediate–band concept for strain–balanced (In, Ga) As/Ga(As, P) quantum dot solar cells, Phys. Rev., 78(20), 205321(2008)
6 M.C.Hanna, A.J.Nozik, Solar conversion efficiency of photovolatic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100(7), 074510(2006)
7 A.J.Nozik, Quantum dot solar cells, Physica, E14, 115(2002)
8 T.Trupke, M.A.Green, P.W¨urfel, Improving solar cell efficienciens by down–conversion of high– energy photons, J. Appl. Phys., 92(3), 1668(2002)
9 R.D.Schaller, V.I.Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion, Phys. Rev. Lett., 92(18), 186601(2004)
10 V.Aroutiounian, S.Petrosyan, A.Khachatryan, A.Khachatryan, K.Touryan, Quantum dot solar cells, J. Appl. Phys., 89(4), 2268(2001)
11 G.D.Wei, S.R.Forrest, Intermediate–band solar cells employing quantum dots embedded in an energy fence barrier, Nano Lett., 7(1), 218(2007)
12 A.Marti, N.Lopez, E.Antolin, E.Canovas, A.Luque, C.R.Stanley, Emitter degradation in quantum dot intermediate band solar cells, Appl. Phys. Lett., 90(23), 233510(2007)
13 R.B.Laghumavarapu, M.El–Emawy, N.Nuntawong, A.Moscho, L.F.Lester, D.L. Huffaker, Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers, Appl. Phys. Lett., 91(24), 243115(2007)
14 C.D.Cress, S.M.Hubbard, B.J.Landi, R.P.Raffaelle, D.M.Wilt, Quantum dot solar cell tolerance to alpha–particle irradiation, Appl. Phys. Lett., 91(18), 183108(2007)
15 R.B.Laghunavarapu, A.Moscho, A.Khoshakhlagh, M.E.Emawy, L.F.Lester, D.L.huffaker, GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response, Appl. Phys. Lett., 90(17), 173125(2007)
16 PENG Yingcai, S.Miyazaki, XU Jun, Chinese J. Vac. Sci. Technol., 29(4), 411(2009)
(彭英才, Miyazaki S, 徐 骏, TiO2纳米结构及其在染料敏化太阳电池中的应用, 真空科学与技术学报, 29(4), 411(2009))
17 S.C.Lin, Y.L.Lee, C.H.Chang, Y.J.Shen, Y.M.Yang, Quantum dot sensitized solar cells: assembled monolayer and chemical bath deposition, Appl. Phys. Lett., 90(14), 143517(2007)
18 C.H.Chang, Y.L.Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum dot sensitized solar cells, Appl. Phys. Lett., 91(5), 053503(2007)
19 Y.J.Shen, Y.L.Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications, Nanotechnology, 19, 045602(2008)
20 L.J.Diguna, Q.Shen, J.Kobayashi, T.Toyoda, High efficiency of CdSe quantum dot sensitized TiO2 inverse opal solar cells, Appl. Phys. Lett., 91(2), 023116(2007)
21 Q.Shen, D.Arae, T.Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates, Photochemistry and Photobiology A: Chemistry, 164, 75(2004)
22 K.S.Leschkies, R.Divakar, J.Basu, E.E.Pommer, J.E.Boercker, C.B.Carter, Photosensiti– zation of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano lett., 7, 1793(2007)
23 R.Loef, A.J.Houtepen, E.Talgorn, J.Schoonman, A.Goossens, Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells, Nano Lett., 9(2), 856(2009)
24 G.Allan, C.Delerue, Role of impact ionization in multiple exciton generation in PbSe nanocrystals, Phys. Rev., B73(20), 205423(2006)
25 V.I.Rupasov, V.I.Klimov, Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states, Phys. Rev., B76(12), 125321(2007)
26 R.D.Schaller, M.Sykora, V.I.Klimov, J.M.Pietrya, Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., 6(3), 424(2006)
27 R.J.Ellingson, M.C.Bead, J.C.Johnson, P.R.Yu, O.I.Micic,A.J.Nozik, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett., 5(5), 865(2005)
28 A.Shabaev, A.L.Efros, A.J.Nozik, Multiexciton generation by a single photon in nanocrystals, Nano Lett., 6(12), 2856(2006)
29 J.E.Murphy, M.C.Beard, A.J.Nozik, A.G.Norman, S.P.Ahrenkiel, PbTe colloidal nanocrystals: Synthesis, characterization and multiple exciton generation, J.Am. Chem. Soc., 128(10), 3241(2006)
30 M.Califano, A.Zunger, A.Franceschetti, Direct carrier multiplication due to inverse auger scattering in CdSe quantum dots, Appl. Phys. Lett., 84(13), 2409(2004)
31 R.D.Schaller, V.M.Agranovich, V.I.Klimov, High–efficiency carrier multiplication through direct photogeneration of mulitiexcitons via virtual single–exciton states, Nature Physics, 1, 189(2005)
32 M.C.Beard, K.P.Knutsen, P.Yu, J.M.Luther, Q.Songet, W.K.Metzger, A.J.Nozik, Multiple exciton generation in colloidal silicon anocrystals, Nano Lett., 7(8), 2506(2007)
33 D.Timmerman, I.Izeddin, P.Stallinga, I.N.Yassievich, T.Gregorkiewicz, Space–separated quantum cutting with silicon nanocrystals for photovoltaic applications, Natrue Photonics, 2, 105(2008)
34 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Progress of Si–based nanometer luminescent materials, Chinese Science Bulletin, 47(10), 721(2002)
(彭英才, Zhao X W, 傅广生, Si基纳米发光材料的研究进展, 科学通报, 47(10), 721(2002))
35 M.Sykora, M.A.Petruska, J.A.Aceved, J.A.Acevedo, I.Bezel, T.J.Meyer, V.I.klimov, Photoinduced charge transfer between CdSe anocrystal quantum dots and Ru–polypyridine complexes, J. Am. Chem. Soc., 128(31), 9984(2006)
36 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Self–assembled growth of ordered Si–based nanometer luminescent materials, Chinese J. Materials Research, 18(5), 449(2004)
(彭英才, Zhao X W, 傅广生, 晶粒有序Si基纳米发光材料的自组织化生长, 材料研究学报, 18(5), 449(2004))
37 ZHANG Lide, MU Jimei, Nanometer Materials and Nanometer Structures (Beijing, The Press of Science, 2002) p.124
(张立德, 牟季美, 纳米材料与纳米结构 (北京, 科学出版社, 2002) p.124)
38 WANG Zhanguo, CHEN Yonghai, YE Xiaoling, Nanometer Semiconductor Technology (Beijing, The Press of Chemical Industry, 2006) p.66
(王占国, 陈涌海, 叶小玲, 纳米半导体技术 (北京, 化学工业出版社, 2006) p.66)
39 D.L.Nika, E.P.Pokatilov, Q.Shav, A.A.Balandin, Charge–carrier states and light absorption in ordered quantum dot superlattices, Phys. Rev., B76(12), 125417(2007)
40 J.S.Sousa, J.A.K.Freire, G.A.Farias, Exciton escape in CdSe core–shell quantum dots: Implications for the development of nanocrystal solar cells, Phys. Rev., B76(15), 155317(2007) |