Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 410-414    
  研究论文 本期目录 | 过刊浏览 |
磁控溅射制备SiC薄膜的高温热稳定性
祝元坤1; 朱嘉琦1; 韩杰才1; 梁军1; 张元纯2
1.哈尔滨工业大学复合材料研究所 哈尔滨 150001
2.中国汽车工业工程公司 天津 300190
High–temperature thermal stability research on SiC thin films by magnetron sputtering
ZHU Yuankun1;   ZHU Jiaqi1;   HAN Jiecai1;   LIANG Jun1;   ZHANG Yuanchun2  
1.Center for Composite Materials; Harbin Institute of Technology; Harbin 150001
2.China Automobile Industry Engineering Cooperation; Tianjin  300190
引用本文:

祝元坤 朱嘉琦 韩杰才 梁军 张元纯. 磁控溅射制备SiC薄膜的高温热稳定性[J]. 材料研究学报, 2009, 23(4): 410-414.
, , , , . High–temperature thermal stability research on SiC thin films by magnetron sputtering[J]. Chin J Mater Res, 2009, 23(4): 410-414.

全文: PDF(806 KB)  
摘要: 

采用磁控溅射方法在Si基底上制备SiC薄膜, 研究了SiC薄膜经不同温度和气氛条件高温退火前后结构、成份的变化. 结果表明, 薄膜主要以非晶为主, 由Si--C键, C--C键和少量Si的氧化物杂质组成; 在真空条件下经高温退火后, 薄膜C--C键的含量减少, 而Si--C键的含量增加, 真空退火有利于SiC的形成; 在800℃空气中退火后, 薄膜表面生成一层致密的SiO2薄层, 阻止了氧气与薄膜内部深层的接触, 有效保护了内部的SiC. 在空气条件下, SiC薄膜在800℃具有较好的热稳定性.

关键词 无机非金属材料磁控溅射热稳定性高温退火SiC薄膜    
Abstract

SiC thin films were grown on Si substrates by magnetron sputtering. The structural and component changes of the films, pre and post high temperature annealing at different temperature and atmosphere conditions, were studied. The results show that the films are characterized by the amorphous microstructure and mainly composed of Si–C bondings, C–C bondings as well as a small mount of oxide impurity consorted with Si; the content of the C–C bondings decreased after annealing in vacuum, meanwhile the Si–C bondings content increased, annealing in vacuum is beneficial to the formation of SiC; after annealing at 800℃ in air, a thin dense layer of SiO2 formed on the surface, which prevented the oxygen from contacting with the film and effectively protected the inner SiC from oxidizing. SiC films have good thermal stability at 800℃ in air.

Key wordsinorganic non--metallic materials    magnetron sputtering    thermal stability    high--temperature annealing    SiC films
收稿日期: 2008-12-05     
ZTFLH: 

TB33

 
基金资助:

国家高技术研究发展计划2006AA0764和哈尔滨市青年创新人才专项资金2007RFQXG039资助项目.

1 H.Morkoe, S.Strite, G.B.Gao, Large–band–gap SiC, III–V nitride, and II–VI ZnSe–based semiconductor device technologies, Journal Applied Physics, 76, 1363(1994) 2 ZHAO Juan, WANG Gui, LIU Lang, Oxidation protective behavior of SiC coating for different carbon matrix, Surface Technology, 36(2), 123(2007) (赵娟, 王贵, 刘朗, SiC涂层对不同碳基体氧化防护行为的研究, 表面技术,  36(2), 123(2007)) 3 S.Zaima, K.Onoda, Y.Koide, Y.Yasuda, Effects of oxidation conditions on electrical properties of SiC–SiO2 interfaces, J. Appl. Phys., 68, 6304(1999) 4 R.M.Todi, K.B.Sundaram, A.P.Warren, K.Scammon, Investigation of oxygen annealing effects on RF sputter deposited SiC thin films, Solid–State Electronics, 50, 1189(2006) 5 A.K.Costa, S.S.Camargo, Jr., Amorphous SiC coatings for WC cutting tools, Surface and Coatings Technology, 163, 176(2003) 6 M.Zaytouni, J.P.Riviere, M.F.Denanot, J.Allain, Structural characterization of SiC films prepared by dynamic ion mixing, Thin Solid Films, 287(1), 1(2006) 7 T.Kaneko, Y.Hosokawa, T.Suga, Low–temperature growth of polycrystalline SiC by catalytic CVD from monomethylsilane, Micr. Eng., (83), 41(2006) 8 Inacio Regiani, Milton F. de Souza, Silicon carbide coating of mullite substrates by the CVD technique, Surface and Coatings Technology, 162, 131(2003) 9 S.M.Rajab, I.C.Oliveira, M.Massi, H.S.Maciel, S.G.dos Santos Filho, R.D.Mansano, Effect of the thermal annealing on the electrical and physical properties of SiC thin films produced by RF magnetron sputtering, Thin Solid Films, 515(1), 170 (2006) 10 Sergei A. Alekseev, Vladimir N. ZaitsevJacques Botsoa, Daniel Barbier, Fourier transform infrared spectroscopy and temperature–programmed desorption mass spectrometry study of surface chemistry of porous 6H–SiC, Chem. Mater., 19(9), 2189(2007) 11 Bibhu P. Swain, The analysis of carbon bonding environment in HWCVD deposited a–SiC:H films by XPS and Raman spectroscopy, Surface & Coatings Technology, 201, 1589(2006) 12 M.Mehregany, C.A.Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments, Thin Solid Films, 355–356, 518(1999) 13 Yi Jian, He Xiaodong, Sun Yue, Electron beam–physical vapor deposition of SiC/SiO2 high emissivity thin film, Applied Surface Science, 253, 4361(2007) 14 G.Neuer, G.Jaroma–Weiland, Spectral and total emissivity of high–temperature materials, International Journal of Thermophysics, 19(3), 917(1998)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[15] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.