Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (3): 288-292    
  研究论文 本期目录 | 过刊浏览 |
掺硼对超纳米金刚石薄膜的影响
王玉乾1;  王兵2;  孟祥钦2; 甘孔银2
1.西南科技大学材料学院 绵阳 621010
2.中物院应用电子学研究所 绵阳 621900
Effect of B-doping on ultrananocrystalline diamond film
WANG Yuqian1;  WANG Bing2;  MENG Xiangqin2;  GAN Kongyin2
1.School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010
2.Institute of Applied Electrinics; CAEP;  Mianyang 621900
引用本文:

王玉乾 王兵 孟祥钦 甘孔银. 掺硼对超纳米金刚石薄膜的影响[J]. 材料研究学报, 2009, 23(3): 288-292.
, , . Effect of B-doping on ultrananocrystalline diamond film[J]. Chin J Mater Res, 2009, 23(3): 288-292.

全文: PDF(850 KB)  
摘要: 

采用微波等离子体化学气相沉积(MPCVD)技术, 利用氩气、甲烷、二氧化碳混合气体, 制备出平均晶粒尺寸在7.480 nm左右、表面粗糙度在15.72 nm左右的高质量的超纳米金刚石薄膜; 在此工艺基础上以硼烷作为掺杂气体, 合成掺硼的金刚石薄膜. 表征结果显示在一定的浓度范围内随着硼烷气体的通入, 金刚石薄膜的晶粒尺寸及表面粗糙度增大、结晶性变好, 不再具有超纳米金刚石膜的显微结构和表面形态; 同时膜材的物相组成也发生改变, 金刚石组份逐渐增多, 并且膜层内出现了更明显的应力以及更好的导电性能.

关键词 无机非金属材料掺硼超纳米金刚石薄膜化学气相沉积    
Abstract

High-quality ultrananocrystalline diamond film was prepared with Ar/CH4/CO2 by using microwave plasma chemical vapor deposition (MPCVD) technology. The average size of the crystalline grains and surface roughness are about 7.480 nm and 15.72 nm, respectively. B-doped diamond thin film was synthesized by adding B2H6 into the gas resource. The results showed that within a certain limits along with the addition of B2H6, the grains size and surfaces roughness of the diamond thin films increased dramatically, and their crystallinity got better. The diamond thin film no longer had the characteristics of the ultrananocrystalline diamond film. Meanwhile, with the addition of B2H6, the diamond phase constitutes in these films increased gradually, and more obvious residual stress and better conductivity appeared at the same time.

Key wordsinorganic non-metallic materials    B-doping    ultrananocrystalline diamond film    CVD
收稿日期: 2008-12-09     
ZTFLH: 

O484

 
基金资助:

国家自然科学基金10876032和国家863计划强辐射重点实验室基金20070202项目.

1 O.A.Williams, M.Daenen, J.DHaen, Comparison of thegrowth and properties of ultrananocrystalline diamond and nanocrystalline diamond, Diamond & Related Materials, 15(4-8), 654(2006) 2 N.Jiang, K.Sugimoto, K.Nishimura, Synthesis and structural study of nano/micro diamond overlayer films, Journal of Crystal Growth, 242(3-4), 362(2002) 3 Bernard Humbert, Nesrine Hellala, Jean Jacques Ehrhardt, X-ray photoelectron and Raman studies of microwave plasma assisted chemical vapour deposition (PACVD) diamond films, Applied Surface Science, 254(20), 6400(2008) 4 Sung-Gi Ri, Daisuke Takeuchi, Christoph E.Nebel, Surface electronic properties on boron doped (111) cvd homoepitaxial diamond films after oxidation treatments, Diamond & Related Materials, 16(4-7), 831(2007) 5 P.W.May,W.J.Ludlow, M.Hannaway, Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films, Diamond & Related Materials, 17(2), 105(2008) 6 C.Tavares, F.Omnes, J.Pernot, Electronic properties of boron-doped {111}-oriented homoepitaxial diamond layers, Diamond & Related Materials, 15(4-8), 582(2006) 7 R.E.Stallcup II, Y.Mo, T.W.Scharf, Formation of nanometer-size high-density pits on epitaxial diamond (100) films, Diamond & Related Materials, 16(9), 1727(2007) 8 Luming Shen, Zhen Chen, An investigation of grain size and nitrogen-doping effects on the mechanical properties of ultrananocrystalline diamond films, International Journal of Solids and Structures, 44, 3379(2007) 9 M.G.Fyta, G.C.Hadjisavvas, P.C.Kelires, Probing the sp2 dependence of elastic moduli in ultrahard diamond films, Diamond & Related Materials, 16(8), 1643(2007) 10 R.J.Zhang, S.T.Lee, Y.W.Lam, Characterization of heavily boron-doped diamond films, Diamond and Related MateriaIs, 5(11), 1288(1996) 11 A.F.Azevedo, R.C.Mendes de Barros, S.H.P.Serrano, SEM and Raman analysis of boron-doped diamond coating on spherical textured substrates, Surface & Coatings Technology, 200(20-21), 5973(2006) 12 N.G.Ferreiraa, E.Abramofb, E.J.Coratb, Residual stresses and crystalline quality of heavily boron- doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction, Carbon, 41(6), 1301(2003) 13 M.Mermoux, F.Jomard, C.Tavares, Raman characterization of boron-doped {111} homoepitaxial diamond layers, Diamond & Related Materials, 15(4-8), 572(2006)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.