Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 149-152    
  研究论文 本期目录 | 过刊浏览 |
聚偏氟乙烯电极化的动力学相变和铁电性
叶芸1; 郭太良1; 蒋亚东2
1.福州大学物理与信息工程学院 福州 350002
2.成都电子科技大学光电信息学院 成都 610054
Dynamical phase transition and ferroelectric properties of poly(vinylidene fluoride) in electric poling
YE Yun1; GUO Tailiang1; JIANG Yadong2
1.College of Physics and Telecommunication Engineering; Fuzhou University; Fuzhou 350002
2.School of Optoelectronic Information; University of Electric Science and Technology of China; Chengdu 610054
引用本文:

叶芸 郭太良 蒋亚东. 聚偏氟乙烯电极化的动力学相变和铁电性[J]. 材料研究学报, 2009, 23(2): 149-152.
, , . Dynamical phase transition and ferroelectric properties of poly(vinylidene fluoride) in electric poling[J]. Chin J Mater Res, 2009, 23(2): 149-152.

全文: PDF(704 KB)  
摘要: 

对聚偏氟乙烯进行高温电极化处理以改善半晶聚合物的铁电性, 研究了其铁电极化值随着极化电场的连续非线性变化,
实现了结晶相中非铁电相向铁电相的转变. 用动力学平衡方法模拟了聚偏氟乙烯样品的电场极化相变过程, 结果表明:
聚偏氟乙烯中结晶区域的有效极化电场约为50 MV/m, 与铁电聚合物的矫顽电场吻合; 非晶无定型区域的等效电场与实验的相变开启电场接近, 并得到了理论与实验符合较好的结果, 从而证明动力学平衡方法模拟聚偏氟乙烯铁电相变的可行性.

关键词 有机高分子材料聚偏氟乙烯电极化 动力学相变, 铁电性    
Abstract

The phase transition of crystalline in poly(vinylidene fluoride) from α anti-ferroelectric to β ferroelectric phase achieved by electric poling treatment with a high temperature has been investigated. It was found that the ferroelectricity of polymer was improved and the polarization depended on increasing poling electric field was non-linear. The phase transition of PVDF in electric field was theoretical simulated based on dynamical equilibrium. The results show that the effective electric field affected on the crystalline is 50 MV/m, which accords with the coercive field of ferroelectric PVDF. At the same time, the effective electric field affected on the amorphous is close to starting electric field of the phase transition. It demonstrates that the method of dynamical equilibrium simulated phase transition of crystalline in PVDF is feasible.

Key wordsorganic polymer materials    Poly(vinylidene fluoride)    electric poling    dynamical equilibrium    ferroelectricity
收稿日期: 2008-08-04     
ZTFLH: 

TB32

 
基金资助:

国家杰出青年科学基金60425101资助项目.

1 S.H.Yao, Z.M.Dang, H.P.Xu, M.J.Jiang, J.B.Bai, Exploration of dielectric constant dependence on evolution of microstructure in nanotubes/ferroelectric polymer nanocomposites, Appl. Phys. Lett., 92(8), 082902(2008)
2 J.Xu, M.Johnson, G.Wilkes, A tubular film extrusion of poly(vinylidene fluoride): Structure/process/property behavior as a function of molecular weight, Polymer, 45(15), 5327(2004)
3 S.B.Lang, S.Muensit, Lesser-known piezoelectric and pyroelectric applications of electroactive polymers, Mater. Res. Soc. Symp. Proc., 899, 3(2006)
4 K.Takashima, S.Horie, T.Mukai, K.Ishida, K.Matsushige, Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor application, Sens. Actuators A Phys., 144(1), 90(2008)
5 W.Y.Chang, C.H.Chu, Y.C.Lin, A flexible piezoelectric sensor for microfluidic applications using polyvinylidene fluoride, IEEE Sensors J., 8(5), 495(2008)
6 M.Toda, J.Dahl, PVDF corrugated transducer for ultrasonic ranging sensor, Sens. Actuators A Phys., 134(2), 427(2007)
7 B.Mohammadi, A.A.Yousefi, S.M.Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films, Polym. Test., 26(1), 42(2007)
8 J.R.Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci., 100(4), 3272(2006)
9 C.H.Du, B.K.Zhu, Y.Y.Xu, Effects of streching on crystalline phase structure and morphology of hard elastic PVDF fibers, J. Appl. Polym. Sci., 104(4), 2254(2007)
10 B.E.EL-Mohajir, N.Heymans, Change in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure, Polymer, 42(13), 5661(2001)
11 FU Wangli, DU Piyi, WENG Wenjian, HAN Gaorong, Preparation and structure of PVDF piezoelectric film, Chinese Jouranl of Materials Research, 19(3), 243(2005)
(傅万里, 杜丕一, 翁文剑, 韩高荣, 聚偏氟乙烯压电薄膜的制备及结构, 材料研究学报,  19(3), 243(2005))
12 W.A.Yee, M.Kotaki, Y.Liu, X.H.Liu, Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers, Polymer, 48(2), 512(2007)
13 Y.Abe, K.Tashiro, M.Kobayashi, Computer simulation of structural changes in the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers, Comput. Theor. Polym. Sci., 10, 323(2000)
14 B.Mohammadi, A.A.Yousefi, S.M.Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films, Polym. Test., 26(1), 42(2007)
15 V.V.Kochervinskii, Specifics of structural transformation in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields, Polym. Sci. Ser. C, 50(1), 93(2008)
16 Y.Chen, C.Y.Shew, Conformational behavior of polar polymer models under electric fields, Chem. Phys. Lett., 378, 142(2003)
17 L.Cai, X.Wang, Y.Darici, J.Zhang, P.A.Dowben, Energetics of the dipole flip-flop motion in a ferroelectric polymer chain, J. Chem. Phys., 126(12), 124908(2007)
18 YE Yun, JIANG Yadong, WU Zhiming, ZENG Hongjuan, Study on phase transitions and characteristics of PVDF thin film during electric poling, Chinese Jouranl of Functional Materials, 36(12), 1883(2005)
(叶芸, 蒋亚东, 吴志明, 曾红娟, 电场作用下PVDF薄膜的结构相变与剩余极化特性研究, 功能材料,   36(12), 1883(2005))
19 L.Carballeira, A.J.Pereiras, M.A.Rios, Conformational properties of poly(vinylidene bromide) and poly(vinylidene fluoride), Macromolecules, 23(5), 1309(1990)

[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.