Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 118-122    
  研究论文 本期目录 | 过刊浏览 |
无基底透明二氧化钛纳米管阵列薄膜的制备
钟启声1; 王大伟1; 李峰1; 逯高清2; 成会明1
1.中国科学院金属研究所~沈阳材料科学国家(联合)实验室 沈阳 110016
2.昆士兰大学化工系 4072 澳大利亚
Preparation of free–standing transparent titania nanotube array membranes
ZHONG Qisheng1; WANG Dawei1; LI Feng1; LU Gaoqing2 ;CHENG Huiming1
1.Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shengyang 110016
2.ARC Centre of Excellence for Functional Nanomaterials; School of Engineering and AIBN;
the University of Queensland; 4072 Australia
引用本文:

钟启声 王大伟 李峰 逯高清 成会明. 无基底透明二氧化钛纳米管阵列薄膜的制备[J]. 材料研究学报, 2009, 23(2): 118-122.
, , , , . Preparation of free–standing transparent titania nanotube array membranes[J]. Chin J Mater Res, 2009, 23(2): 118-122.

全文: PDF(926 KB)  
摘要: 

在由乙二醇、水、氟化铵组成的电解液中添加钼酸钠调节阳极附近的离子浓度, 制备出厚度大约为10微米的透明二氧化钛纳米管阵列薄膜. 所得二氧化钛是无定型结构, 在120℃水热处理可以将其转化成锐钛矿结构, 并保持薄膜的结构完整性. 该薄膜的透射率与其表面结构和晶体结构有关. 这种透明二氧化钛纳米管阵列薄膜可望应用于染料敏化太阳能电池.

关键词 无机非金属材料钼酸盐二氧化钛纳米管透明薄膜    
Abstract

The free–standing transparent TiO2 nanotube array membranes were prepared by anodization of titanium foil in ethylene glycol organic electrolyte containing water, ammonium fluoride, and sodium molybdate. The membrane was amorphous TiO2 and its thickness was about 10μm. It was found that the amorphous TiO2 nanotubes could be transformed to anatase structure after a hydrothermal treatment at 120oC  while the integrity structure of the membranes was well remained. It is found that the transmittance of such transparent membrane is determined by the surface structure and its crystal structure. The TiO2 nanotube array membranes can be expected to be used in dye sensitized solar cells.

Key wordsinorganic non–metallic materials    molybdate    TiO2 nanotubes    transparent membrane
收稿日期: 2008-11-12     
ZTFLH: 

O484

 
基金资助:

国家九七三计划 2009CB220001资助项目.

1 ZHAO Yanning, LIU Gang, SUN Chenghua, LI Feng, LU Gaoqing, CHENG Huiming, Doping states of boron in nanocrystalline TiO2 powders, Chinese Journal of Materials Rearch, 22(2), 125(2008)
(赵燕宁, 刘岗, 孙成华, 李峰, 逯高清, 成会明, 硼在纳米晶氧化钛中的掺杂状态, 材料研究学报, 22(2), 125(2008))
2 O. K.Varghese, D.W.Gong, M.Paulose, K.G.Ong, E.C.Dickey, C.A.Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials, 15, 624(2003)
3 K.Shankar, G.K.Mor, H.E.Prakasam, S.Yoriya, M.Paulose, O.K.Varghese, C.A.Grimes, Highly–ordered TiO2 nanotube arrays up to 220 μu m in length: use in water photoelectrolysis and dye–sensitized solar cells. Nanotechnology, 18, 065707(2007)
4 J.Wang, Z.Q.Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chemistry of Materials, 20, 1257(2008)
5 M.Gratzel, Photoelectrochemical cells. Nature, 414, 338(2001)
6 B.Oregan, M.Gratzel, A Low–Cost, High–Efficiency Solar–Cell Based on Dye–Sensitized Colloidal TiO2 Films, Nature, 353, 737(1991)
7 G.K.Mor, K.Shankar, M.Paulose, O.K.Varghese, C.A.Grimes, Use of highly–ordered TiO2 nanotube arrays in dye–sensitized solar cells. Nano Letters, 6, 215(2006)
8 M.Paulose, K.Shankar, O.K.Varghese, G.K.Mor, B.Hardin, C.A.Grimes, Backside illuminated dye–sensitized solar cells based on titania nanotube array electrodes. Nanotechnology, 17, 1446(2006)
9 H.Z.Zhang, X.H.Luo, J.Xu, B.Xiang, D.P.Yu, Synthesis of TiO2/SiO2 core/shell nanocable arrays, Journal of Physical Chemistry B, 108, 14866(2004)
10 K.G.Ong, O.K.Varghese, G.K.Mor, K.Shankar, C.A.Grimes, Application of finite–difference time domain
to dye–sensitized solar cells: The effect of nanotube–array negative electrode dimensions on light absorption. Solar Energy Materials and Solar Cells, 91, 250(2007)
11 K.Shankar, J.Bandara, M.Paulose, H.Wietasch, O.K.Varghese, G.K.Mor, T.J.LaTempa, M.Thelakkat, C.A.Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor–antenna dye. Nano Letters, 8, 1654(2008)
12 TANG Yuxing, TAO Jie, TAO Haijun, WU Tao, WANG Ling, ZHANG Yanyan, LI Zhuanli, TIAN Xilin, Fabrication and characterization for transparent electrodes of TiO2 nanotube arrays on fluorine–doped Tin oxide–coated glass, Acta Phys.–Chim. Sin., 24, 1120–1126(2008)
(汤育欣, 陶杰, 陶海军, 吴涛, 王玲, 张焱焱, 李转利, 田西林, 透明TiO2纳米管/FTO电极制备及表征, 物理化学学报, 24, 1120(2008))
13 M.Paulose, H.E.Prakasam, O.K.Varghese, L.Peng, K.C.Popat, G.K.Mor, T.A.Desai, C.A.Grimes, TiO2 nanotube arrays of 1000 μu m length by anodization of titanium foil: Phenol red diffusion, Journal of Physical Chemistry C, 111, 14992(2007)
14 S.Yoriya, M.Paulose, O.K.Varghese, G.K.Mor, C.A.Grimes, Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. Journal of Physical Chemistry C, 111, 13770(2007)
15 G.K.Mor, O.K.Varghese, M.Paulose, K.Shankar, C.A.Grimes, A review on highly ordered, vertically
oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 90, 2011(2006)
16 D.Gong, C.A.Grimes, O.K.Varghese, W.C.Hu, R.S.Singh, Z.Chen, E.C.Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16, 3331(2001)
17 K.Zhu, N.R.Neale, A.Miedaner, A.J.Frank, Enhanced charge–collection efficiencies and light scattering in dye–sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 7, 69(2007)
18 C.A.Grimes, Synthesis and application of highly ordered arrays of TiO2 nanotubes, Journal of Materials Chemistry, 17, 1451(2007)
19 X.H.Xia, Y.Liang, Z.Wang, J.Fan, Y.S.Luo, Z.J.Jia, Synthesis and photocatalytic properties of TiO2 nanostructures. Materials Research Bulletin, 43, 2187(2008)
20 C.C.Tsai, J.N.Nian, H.S.Teng, Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science, 253, 1898(2006)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.