Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 629-633    
  研究论文 本期目录 | 过刊浏览 |
不同强度中碳TRIP钢的高周疲劳破坏行为
班丽丽1;2;惠卫军1;2†;雍岐龙1;2;翁宇庆2;3;董瀚2
1.昆明理工大学材料与冶金工程学院 昆明 650093
2.钢铁研究总院结构材料研究所 北京 100081
3.中国金属学会 北京 100711
High cycle fatigue behavior of medium–carbon trip steel at different tensile strength levels
BAN Lili1;2; HUI Weijun1;2†; YONG Qilong1;2; WENG Yuqing2;3; DONG Han2
1.Faculty of Materials and Metallurgical Engineering; Kunming University of Science and Technology; Kunming 650093
2.Institute for Structural Materials; Central Iron & Steel Research Institute; Beijing 100081
3.The Chinese Society for Metals; Beijing 100711
引用本文:

班丽丽 惠卫军 雍岐龙 翁宇庆 董瀚. 不同强度中碳TRIP钢的高周疲劳破坏行为[J]. 材料研究学报, 2008, 22(6): 629-633.
, , , , . High cycle fatigue behavior of medium–carbon trip steel at different tensile strength levels[J]. Chin J Mater Res, 2008, 22(6): 629-633.

全文: PDF(1106 KB)  
摘要: 

对比研究了不同强度中碳TRIP钢的旋转弯曲疲劳性能和疲劳裂纹扩展速率特征. 结果表明, 对于1100 MPa和1300 MPa两种强度级别,等温淬火(AT)处理试样的旋转弯曲疲劳强度均高于淬火回火(QT)处理的试样.两种强度级别的AT样的疲劳极限与抗拉强度之比均高达0.56, 明显高于QT样的0.51--0.52, 同时, AT样的疲劳裂纹扩展速率均明显低于QT样. 此外,实验钢的抗拉强度从1100 MPa级提高到1300 MPa级,AT样与QT样的疲劳强度和疲劳裂纹扩展速率之间的差异均缩小.

关键词 金属材料 TRIP钢 抗拉强度 等温淬火 疲劳性能    
Abstract

Bending rotating fatigue properties and fatigue crack growth (FCG) characteristic of a medium–carbon TRIP steel at different tensile strength (Rm) levels were investigated. The results show that the fatigue  limits σ−1 of austempering (AT) specimens are higher than those of quenching and tempering (QT)  specimens at the strength levels of 1100 MPa and 1300 MPa. The ratios of σ−1 to Rm−1/Rm) of AT  specimens can reach 0.56, which are higher than those of QT specimens (0.51 ~ 0.52), and the FCG  results show that the stage–Ⅱ fatigue crack growth rates da/dN of AT specimens are lower than those  of QT specimens at the same tensile strength level. Moreover, the differences in fatigue limit and da/dN  between AT and QT conditions decreased with the increase of tensile strength from 1100 MPa to 1300  MPa.

Key wordsmetallic materials    TRIP steel    tensile strength    austempering    fatigue property
收稿日期: 2008-03-27     
ZTFLH: 

TG142

 
基金资助:

国家重点基础研究发展规划(973)(2004CB619104)

1 H.E.Frankel, J.A.Benett, W.A.Pennington, Fatigue properties of high strength steels, Trans. ASM, 52, 257(1960)
2 S.Song, K.Sugimoto, S.Kandaka, A.Fautamura, M.Kobayashi, S.Masuda. Effect of prestraining on high cycle fatigue strength of high strength low alloy TRIP steels. Soc.Mat. Sci., Japan, 50(10), 1091(2001)
3 K.Sugimoto, S.Song, K.Inoue, M.Kobayashi, S.Masuda, Effect of prestraining on low cycle fatigue properties of low alloy TRIP steels, Soc. Mat. Sci. Japan, 50(6), 657(2001)
4 S.Song, S.Kandaka, K.Sugimoto, M.Kobayashi, S.Masuda, Fatigue properties of low alloy TRIP sheet steels, CAMP–ISIJ., 13 622(2000)
5 K.Sugimoto, M.Kobayashi, K.Inoue, S.Masuda, Fatigue– hardening behaviour of TRIP–aided bainitic steels, ISIJ international, 85(11), 72(1999)
6 S.Song, K.Sugimoto, S.Kandaka, A.Fautamura, M.Kobayashi, S.Masuda, Effect of prestraining on high cycle fatigue strength of high–strength low alloy TRIP–aided steels, Materials Science Research International, 9(3), 223(2003)
7 K.Sugimoto, M.Kobayashi, K.Inoue, Sun Xiaodong, T. Soshiroda, Fatigue strength of TRIP–aided bainitic sheet steels, Testu–to–Hagane, 84(8), 19(1998)
8 G.B.Olson, R.Chait, M.Azrin, R.A.Gagne, Fatigue strength of TRIP steels, Metallurgical Transactions A., 11A(6), 1069(1980)
9 S.Yasuki, K.Sugimoto, M.Kobayashi, S.Hashimoto, Low cycle fatigue–hardening of TRIP–aided dual–phase steels, J. Japan Inst. Metals, 54(12), 1350(1990)
10 T.Muramatsu, T.Hojo, K.Sugimoto, S.Ikeda, Fatigue strength of ultra high strength TRIP–aided ferrous steels with bainitic ferrite matrix, CAMP–ISIJ., 17, 1343(2004)
11 E.Girault, P.Jacques, P.Harlet, K.Mols, J.V.Humbeeck, E.Aernoudt, F.Delannay, Metallographic methods for revealing the multiphase microstructure of TRIP–assisted steels, Materials Characteristic, 40, 111(1998)
12 Y.Tomita, K.Morioka, Effect of microstructure on transformation–induced plasticity of silicon–containing low–alloy steel, Materials Characterization, 38, 243(1997)
13 A.Basuki, E.Aernoudt, Effect of deformation in the intercritical area on the grain refinement of retained austenite of 0.4C TRIP steel, Scripta Materialia, 40(9), 1003(1999)
14 BAN Lili, HUI Weijun, YONG Qilong, WENG Yuqing, Effect of retained austenite on the fatigue property in medium–carbon TRIP steel, Chinese Journal of Materials Research, 21(Supp1), 196(2007)
(班丽丽, 惠卫军, 雍岐龙, 翁宇庆, 残余奥氏体对中碳TRIP钢疲劳性能的影响, 材料研究学报, 21(Supp1), 196(2007))
15 I.B.Timokhina, P.D.Hodgson, E.V.Pereloma, Effect of microstructure on the stability of retained austenite in transformation–induced–plasticity steels, Metallurgical and Materials Transactions A, 35A(8), 2331(2004)
16 A.Z.Hanzaki, P.D.Hodgson, S.Yue, Retained austenite characteristics in thermomechanically processed siam transformation–induced Plasticity Steels, Metallurgical and Materials Transactions A, 28A(11), 2405(1997)
17 SUN Peng, LI Lin, FU Renyu, Wei Xicheng, Dynamic tensile properties and retained austenite transformation in HSLA–TRIP steel, Iron and Steel, 39(10), 63(2004)
(孙鹏, 李麟, 符仁钰, 韦习成, HSLA--TRIP钢动态拉伸性能和残余奥氏体转变, 钢铁, 39(10), 63(2004))
18 S.D.Antolovich, A.Saxena, A model for fatigue crack propagation, Engineering Fracture Mechanic, 7, 649(1975)
19 GAO Huilin, TAN Yuxun, WANG Xiaotian, Strain induced martensitic transformation in fatigue crack tip zone for an ultra–high strength steel, Acta Metallurgica Sinica, 24(1), A17(1988)
(高惠临, 谈育煦, 王笑天, 超高强度钢疲劳塑性区内的应变诱发马氏体相变, 金属学报, 24(1), A17(1988))

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.