Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 634-638    
  研究论文 本期目录 | 过刊浏览 |
铁素体-珠光体型非调质钢疲劳破坏行为
查小琴1;惠卫军2†;雍岐龙2
1.中国船舶重工集团公司第七二五研究所  洛阳 471039
2.钢铁研究总院 先进钢铁材料技术国家工程研究中心 北京 100081
High–cycle fatigue fracture behavior of ferrite–pearlite type microalloyed steels
 CHA Xiaoqin1; HUI Weijun2†; YONG Qilong2
1.Luoyang Ship Material Research Institute; Luoyang 471039
2.National Engineering Research Center of Advanced Steel Technology;
Central Iron and Steel Research Institute; Beijing 100081
引用本文:

查小琴 惠卫军 雍岐龙. 铁素体-珠光体型非调质钢疲劳破坏行为[J]. 材料研究学报, 2008, 22(6): 634-638.
, , . High–cycle fatigue fracture behavior of ferrite–pearlite type microalloyed steels[J]. Chin J Mater Res, 2008, 22(6): 634-638.

全文: PDF(1026 KB)  
摘要: 

研究了三种碳和钒含量不同的铁素体--珠光型非调质钢的高周疲劳破坏行为,并与调质钢进行了对比. 结果表明, 铁素体--珠光体型非调质钢的高周疲劳性能与其微观组织特征有关.提高铁素体相硬度, 其疲劳极限及疲劳极限比均提高, 疲劳极限比最高可达0.60,远高于调质钢的0.50; 热轧态粗大的网状铁素体--珠光体组织的疲劳性能较差,低于同等强度水平的高温回火马氏体组织.  铁素体--珠光体型非调质钢疲劳破坏机制不同于调质钢,其疲劳裂纹基本上萌生于试样表面的铁素体/珠光体边界, 并优先沿着铁素体/珠光体边界扩展;对于同等强度水平的调质钢, 不存在像铁素体那样的软相,因而易在试样表层粗大的夹杂物处萌生疲劳裂纹.

关键词 材料科学基础学科 铁素体--珠光体型非调质钢 高周疲劳 疲劳裂纹萌生和扩展 微观组织    
Abstract

High–cycle fatigue fracture behaviors of three ferrite–pearlite type microalloyed steels with different carbon and vanadium content and one quenched and tempered (QT) low alloy steel 40Cr for comparison were investigated by rotating bending fatigue test. The results show that microstructure has a significant effect on the fatigue properties of the microalloyed forging steels. Both fatigue limit and fatigue limit ratio increase with increasing the hardness of ferrite and the fatigue limit ratio of 22MnVS steel is as high as 0.60, which is much higher than that of QT steel 40Cr. The formation of film–like ferrite along coarse prior austenite grain boundary deteriorates the fatigue properties of medium–carbon steels 38MnVS and 48MnS in as–rolled condition, which is lower than that of QT steel 40Cr. The fatigue fracture mechanism of microalloyed steels is different from that of QT steel. For the microalloyed steels, almost all the fatigue cracks initiated mainly along the boundary between ferrite and pearlite and propagated preferentially along that boundary, whereas for QT steel with same strength level, which does not possess soft phase of ferrite, the fatigue cracks easily initiated at coarse subsurface inclusions.

Key wordsfoundational discipline in materials science    ferrite–pearlite type microalloyed medium–carbon steel    high–cycle fatigue    fatigue crack initiation and propagation    microstructure
收稿日期: 2008-01-16     
ZTFLH: 

TG142

 
基金资助:

国家重点基础研究发展规划(2004CB619104)

1 DONG Chengrui, REN Haipeng, JIN Tongzhe, Microalloyed Non–quenched and Tempered Steels (Beijing, Metallurgical Industry Press, 2000)p.1 
(董成瑞, 任海鹏, 金同哲, 微合金非调质钢 (北京, 冶金工业出版社, 2000)p.1)
2 D.J.Naylor, Review of international activity on microalloyed engineering steels, Ironmaking and Steelmaking, 16(4), 246(1989)
3 D.J.Milbourn, Air–cooled forging steels for automotive applications, Steel Times, 224(10), 351(1996)
4 H.Kubo, H.Mori, Technical developments and recent trends in crankshaft materials, Kobelco Technology Review, (26), 37(2005)
5 P.Farsetti, A.Blarasin, Fatigue behaviour of microalloyed steels for hot–forged mechanical components, Int. J. Fatigue, 10(3), 153(1988)
6 ZHA Xiaoqin, HUI Weijun, YONG Qilong, DONG Han, WENG Yuqing, LONG Jinmin, Efffct of vanadium on the fatigue properties of microalloyed medium–carbon steels, Acta Metall. Sinica, 43(7), 719(2007)
(查小琴, 惠卫军, 雍岐龙, 董瀚, 翁宇庆, 龙晋明, 钒对中碳非调质钢疲劳性能的影响, 金属学报, 43(7), 719(2007))
7 H.Yaguchi, T.Tsuchida, Y.Matsushima, S.Abe, K.Iwasaki, A.Inada, Effect of microstructures on the fatigue behavior of V–added ferrite–pearlite type microalloyed steels, Kobelco Technology Review, (25), 59(2002)
8 S.Sankaran, V.S.Sarma, K.A.Padmanabhan, Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite m pearlite and quenched and tempered microstructures, Mater. Sci. & Engng., A345, 328(2003)
9 S.Nishida, N.Hattori, H.Kubota, H.Nisitani, Effect of carbon on fatigue crack initiation of plain carbon steels, Trans. JSME, 61A(590), 2134(1995)
(西田新一, 服部信祐, 久保田浩史,西谷弘信, フェライト結晶粒径を揃えたSC材の高サイクル疲労き裂発生に及ぼす炭素量の影響, 日本機械学会論文集A, 61A(590), 2134(1995))
10 ZHA Xiaoqin, HUI Weijun, YONG Qilong, DONG Han, WENG Yuqing, LONG Jinmin, Effect of microstructure on the tatigue properties of microalloyed medium–carbon steel, Heat Treatment of Metals, 32(6), 92(2007)
(查小琴, 惠卫军, 雍岐龙, 董瀚, 翁宇庆, 龙晋明, 微观组织对中碳微合金非调质钢疲劳性能的影响, 金属热处理, 32(6), 92(2007))

[1] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[3] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[4] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[5] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[8] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[9] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[10] 聂敬敬, 龚政轩, 孙京丽, 杨斯达, 夏先朝, 徐爱杰. 2195-2219异种铝合金焊接接头的微观组织和性能[J]. 材料研究学报, 2023, 37(2): 152-160.
[11] 肖寒, 周瑀杭, 陈磊, 张雄超, 崔鋆昕, 熊迟. 等温处理时间对触变挤压锡青铜轴套的组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 641-648.
[12] 王国田, 龙泽堃, 吴彪, 王强, 丁宏升. 脉冲电流对冷坩埚定向凝固TiAl基合金微观组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 706-714.
[13] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[14] 范晋平, 蒋一锋, 裴镖, 康文旭. YMg-14Al-5Si合金性能的影响[J]. 材料研究学报, 2022, 36(3): 213-219.
[15] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.