Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 623-628    
  研究论文 本期目录 | 过刊浏览 |
添加填料合成SiC(Al)纤维的先驱体聚铝碳硅烷
赵大方;李效东;郑春满
国防科技大学CFC重点实验室 长沙 410073
Polyaluminocarbosilane prepared with fillings as precursors for SiC(Al) fibers
Zhao Dafang; Li Xiaodong; Zheng Chunman
Key Lab of Ceramic Fiber and Composites; National University of Defense Technology; Changsha 410073
引用本文:

赵大方 李效东 郑春满. 添加填料合成SiC(Al)纤维的先驱体聚铝碳硅烷[J]. 材料研究学报, 2008, 22(6): 623-628.
, , . Polyaluminocarbosilane prepared with fillings as precursors for SiC(Al) fibers[J]. Chin J Mater Res, 2008, 22(6): 623-628.

全文: PDF(932 KB)  
摘要: 

以聚硅碳硅烷和乙酰丙酮铝为原料, 在反应装置的裂解柱中加入填料,在常压下合成了聚铝碳硅烷. 结果表明: 添加填料使合成聚铝碳硅烷的时间缩短46%,聚铝碳硅烷的 从1008增大到2436, 分子量的分布变窄, ---Si---Si---键的含量低;在N2气氛中, 在400℃以下失重减少,  在1200℃陶瓷的产率从65%提高到69%;加入填料可促进---Si---Si---链转化为---Si---C---Si---链, 制备出的聚铝碳硅烷纤维在预氧化过程中氧的增重少,预氧化烧成后得到的Si--Al--C--O连续纤维强度为2.1 GPa,在Ar中1800℃烧结可得到致密的SiC(Al)纤维. 纤维的结晶行为与不加填料时的类似.

关键词 无机非金属材料 聚铝碳硅烷 SiC纤维 陶瓷先驱体    
Abstract

Polyaluminocarbosilane(PACS) was synthesized by a reaction between polysilacarbosilane and  aluminum acetylacetonate at ambient pressure in N2. A reactor with a high temperature pyrolysis equipment which was filled with fillings was used, so PACS can be prepared for shorter reaction  time. Comparing with the PACS synthesized without fillings, its Mn increased from 1008 to 2436,  its molecular distribution was narrower, and its –Si–Si– bonds content decreased. Moreover,  ceramic yield of the obtained PACS at 1200℃ in N2 was increased from 65% to 69% when it was  synthesized with fillings. It is suggested that the translation from –Si–Si– bonds to –Si–C– bonds  was facilitated when the filling existed. The PACS is spinnability. Lower mass was gotten during  air curing process. The tensile strength of the obtained Si–Al–C–O fiber is 2.1 GPa. A densified  SiC(Al) fiber was obtained after been heated at 1800 ℃ in Ar.

Key wordsinorganic non-metallic materials    Polyaluminocarbosilane    SiC fibers    preceramic polymer
收稿日期: 2008-02-18     
ZTFLH: 

TQ343

 
基金资助:

国家自然科学基金(59972042);武器装备预研项目

1 S.Yajima, J.hayashi, K.Okamura, Pyrolysis of a Polyborodiphenylsiloxane, Nature, 266, 521(1977)
2 CHENG Xiangzheng, XIE Zhengfang, SONG Yongcai, XIAO Jiayu, Infulence of reaction temperature on the properties of polycarbosilane synthesized from polydimethylsilane under high pressure, Acta Polymerica Sinica, 851(2005)
(程祥珍, 谢征芳, 宋永才, 肖加余,反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响,高分子学报, 851(2005))
3 H.Ichikawa, F.Machino, S.Mitsuno, T.Ishikawa, K.Okamura, Y.Hasigawa, Synthesis of continuous silicon carbide fibre. Part 5. Factors affecting stability of polycarbosilane to oxidation, Journal of Materials Science, 21, 4352 (1986)
4 T.Ishikawa, Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi–Nicalon for ultra–high temperature, Composites Science and Technology, 51, 135(1994)
5 M.Takeda, J.I.Sakamoto, Y.Imai, H.Ichikawa, Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM, Composites Science and Technology, 59, 813(1999)
6 M.Takeda, Y.Imai, H.Ichikawa, N.Kasai, T.Seguchi, K.Okamura, Thermal stability of SiC fiber prepared by an irradiation- curing process, Composites Science and Technology, 59, 793(1999)
7 K.Suzuki, K.Kumagama, T.Kamiyama, M.Shibuya, Characterization of the medium–range structure of Si–Al–C–O, Si–Zr–C–O and Si–Al–C Tyranno fibers by small angle Xray scattering, Journal of Materials Science, 37, 949(2002)
8 E.Vanswijgenhoven, K.Lambrinou, M.Wevers, O.V.D.Biest, Comparative study of the surface roughness of Nicalon and Tyranno silicon carbide fibres, Composites Part A, 29A, 1417(1998)
9 W.Yang, H.Araki, A.Kohyama, Q.Hul, Growing SiC nanowires on Tyranno-SA sic fibers, Journal of the American Ceramic Society, 87, 733(2004)
10 S.Dong, Y.Katoh, A.Kohyama, Processing optimization and mechanical evaluation of hot pressed 2D Tyranno– SA/SiC composites, Journal of the European Ceramic Society, 23, 1223(2003)
11 T.Ishikawa, Y.Kohtoku, K.Kumagawa, T.Yamamura, T.Nagasawa, High-strength alkali-resistant sinteredSiC fibre stable to 2,200 C, Nature, 391, 773(1998)
12 K.Morishitaw, S.Ochiai, H.Okuda, T.Inshikawa, M.Sato, T.Inoue, Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3), Journal of American Ceramic Society, 89, 2571-2576(2006)
13 F.Cao, X.D.Li, P.Peng, C.X.Feng, J.Wang, D.P.Kim, Structural evolution and associated properties on conversion from Si–C–O–Al ceramic fibers to Si–C–Al fibers by sintering, Journal of Material Chemistry, 12, 606(2002)
14 D.F.Zhao, X.D.Li, C.M.Zheng, T.J.Hu, Production mechanism of polyaluminocarbosilane using aluminum acetylacetonate with polysilacarbosilane, Journal of University of Science and Technology Beijing, 29, 130(2007)
15 S.Yajima, Y.Hasegawa, J.Hayashi, M.Iimura, Synthesis of continuous silicon carbide fiber with high tensile strength and high Yong’s modulus part 1 Synthesis of polycarbosilane as precursor, Journal of Materials Science, 13, 2569 (1978)
16 H.Q.Ly, R.Taylor, R.J.Day, F.Heatley, Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and Curing Products, Journal of Materials science, 36, 4037(2001)
17 Y.Hasegawa, K.Okamura, Synthesis of continuous silicon carbide fibre part 3 Pyrolysis process of polycarbosilane and structure of the products, Journal of Materials science, 18, 3633(1983)
18 ZHENG Chunman, ZHU Bin, LI Xiaodong, WANG Yifei, Study on thermal-curing of polycarbosilane fibers, Acta Polymerica Sinica, 246(2004)
(郑春满, 朱冰, 李效东, 王亦菲, 聚碳硅烷纤维的热交联研究, 高分子学报, 246(2004))
19 M.Narisawa, K.Shimoda, M.Nishioka, T.Iseki, H.Mabuchi, K.Okamura, T.Dohmaru. Silicon carbide base ceramic fibers synthesis from polycarbosilane– polymethylsilane blend polymers by melt spinning, Journal of the Ceramic Society of Japan, 114, 511(2006)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.