Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (4): 439-443    
  论文 本期目录 | 过刊浏览 |
一种合成LiFePO4的新方法
张俊喜;曹小卫;徐娜;张铃松;颜立成;张万友
上海电力学院
A novel synthesis method for lithium iron phosphate cathode material
ZHANG Jun-Xi;;;;
上海电力学院
引用本文:

张俊喜; 曹小卫; 徐娜; 张铃松; 颜立成; 张万友 . 一种合成LiFePO4的新方法[J]. 材料研究学报, 2008, 22(4): 439-443.
, , , , , . A novel synthesis method for lithium iron phosphate cathode material[J]. Chin J Mater Res, 2008, 22(4): 439-443.

全文: PDF(1042 KB)  
摘要: 结合共沉淀原理和腐蚀电化学原理, 提出了一种合成LiFePO4的新方法. 对新方法合成路线中的反应物、添加物以及热处理条件作了实验分析, 并用XRD分析了LiFePO4的晶体结构和晶粒尺寸分布, 用SEM分析了形貌, 用充放电测试技术分析了材料的比容量及其电化学性能. 结果表明: 新方法在合成中不引入其它杂质离子, 避免了常规共沉淀合成工艺中过滤、 洗涤等过程对LiFePO4前驱体的不利影响. 用新方法制备的LiFePO4晶粒分布在20-70 nm, 在0.1C下首次放电容量为\linebreak 147 mAh/g. 新方法有利于对LiFePO$_{4}$的Mg2+掺杂改性, 明显地提高LiFe1-xMgxPO4的电化学性能.
关键词 无机非金属材料磷酸铁锂共沉淀    
Abstract:this paper describes a new synthesis route to prepare LiFePO4 cathode material. The novel aspect of the synthesis is based on a critical step involving the addition of CuO powder to promote the dissolve of Fe powder in Phosphate acid solution. The materials were characterized by thermogravimetric and differential thermal analysis, X-ray powder diffraction, Scanning electron microscopy and electrochemical measurements. Results shows that the prepared LiFePO4 materials display good electrochemical performance, suggests that the synthesis route has the possibility of an easy scale-up to an industrial process.
Key words
收稿日期: 2007-09-15     
ZTFLH:  TM912.9  
1 M.Takahashi,S.Tobishima,K.Takei,Y.Sakurai,Charac- terization of LiFePO4 as the cathode material for recharge- able lithium batteries,J.Power Sources,97-98,508- 511(2001)
2 A.K.Padhi,K.S.K.Nanjundoswamy,C.Masquelier, S.Okada,J.B.Goodenough,Effect of structure on Fe~(3+)/Fe~(2+)redox couple in iron phosphates,J.Elec- trochem.Soc.,144,1609-1913(1997)
3 J.Barker,M.Y.Saidi,J.L.Swoyer,Lithium iron(Ⅱ) pohospho-olivine prepared by a novel carbontherma re- duction method,Electrochem.Solid State Lett.,6,A53- A55(2003)
4 A.A.salah,A.Mauger,K.Zaghib,J.B.Goodenough, N.Ravet,M.Gauthier,F.Gendron,C.M.Julien,Reduction Fe~(3+)of impurities in LiFePO_4 from pyrolysis of organic precursor used for carbon deposition,J.Electrochem. Soc.,153,A1692-A1701(2006)
5 P.P.Prosini,M.Carewska,S.Scaccia,P.Wisniewski, S.Passerini,M.Pasquali,A new synthetic route for preparing LiFePO_4 with enhanced electrochemical per- formance,J.Electrochem.Soc.,149,A886-A890(2002)
6 S.Yang,Y.Peter,M.Zavalij,S.Whittingham,Hydrother- mal synthesis of lithium iron phosphate electrodes,Elec- trochemistry communication,3,505-508(2001)
7 J.Chen,M.S.Whittingham,Hydrothermal synthesis of lithium iron phosphate,Electrochemistry communication, 8,855-858(2006)
8 A.D.Spong,G.Vitins,J.R.Owen,A solution-precursor synthesis of carbon-coated LiFePO_4 for Li-ion cells,J. Electrochem.Soc.,152,A2376-A2382(2005)
9 J.S.Yang,J.J.Xu,Nonaqueous Sol-Gel synthesis of high performance LiFePO_4,Electrochem.Solid State Lett.,7, A515-A518(2004)
10 G.X.Wang,S.L.Bewlay,K.Konstantinov,H.K.Liu, S.X.Dou,Physical and electrochemical properties of doped lithium iron phosphate electrodes,Electrochimica Acta,50,443-447(2004)
11 A.Yamada,M.Hosoya,S.C.Chung,Olivine type cathodes achievement and problems,J.Power Sources,119-121, 232-238(2003)
12 M.Higuchi,Y.Azuma,Synthesis of LiFePO_4 cathode ma- terial by microwave processing,J.Power Sources,119- 121,258-261(2003)
13 S.Franger,F.L.Cras,C.Bourbon,H.Rouault,Comparison between different LiFePO_4 synthesis routes and their influ- ence on its physico-chemical properties,J.Power Sources, 119-121,252-257(2003)
14 CAO Chu'nan,The principle of corrosion electrochem- istry,Beijing,Chemical Industry Press,1985,p.147 (曹楚南,腐蚀电化学原理(北京,化学工业出版社,1985年) p.147)
15 F.Crose,A.D.Epifanio,J.Hassoun,A.Deptula,T.Olczac, B.Scrosati,A novel concept for the synthesis of an im- proved LiFePO_4 lithium battery cathode,Electrochem. Solid-State Lett.,5,A47-A50(2002)
16 D.P.Chen,A.Maljuk,C.T.Lin,Floating Zone growth of lithium iron(Ⅱ)phosphate single crystals,J.Crystal Growth,284,86-90(2005)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.