Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (4): 394-398    
  论文 本期目录 | 过刊浏览 |
高压烧结AlN陶瓷的微观结构和残余应力
李小雷;马红安;郑友进;刘万强;左桂鸿;李吉刚;李尚升;贾晓鹏
河南理工大学材料科学与工程学院
High-pressure Sintering and Microstructure Development of Aluminum Nitride Ceramics with Y2O3 as a Aintering Aid
LI Xiao-Lei;;;;;;
吉林大学超硬材料国家重点实验室
引用本文:

李小雷; 马红安; 郑友进; 刘万强; 左桂鸿; 李吉刚; 李尚升; 贾晓鹏 . 高压烧结AlN陶瓷的微观结构和残余应力[J]. 材料研究学报, 2008, 22(4): 394-398.
, , , , , , , . High-pressure Sintering and Microstructure Development of Aluminum Nitride Ceramics with Y2O3 as a Aintering Aid[J]. Chin J Mater Res, 2008, 22(4): 394-398.

全文: PDF(852 KB)  
摘要: 在5.0 GPa、1300-1800℃条件下不使用烧结助剂高压烧结制备了AlN陶瓷, 研究了烧结温度和烧结时间对AlN高压烧结体微观结构和残余应力的影响. 结果表明: 高压烧结制备AlN陶瓷能有效地降低烧结温度和缩短烧结时间, 在5.0 GPa /1400℃/50 min条件下AlN烧结体表现出穿晶断裂模式; 将烧结温度提高到1800℃在AlN陶瓷中形成了单相多晶等轴晶粒组织; 在5.0 GPa/1700℃/125 min条件下AlN陶瓷内部存在2.0GPa的残余压应力, 其原因是在高压烧结AlN陶瓷出现了晶格畸变
关键词 无机非金属材料AlN陶瓷高压烧结    
Abstract:High-density AlN ceramics were prepared without sintering additives by high-pressure sintering at 5.0 GPa and differente temperatures. The characterization of the sintered bodies was determined by XRD, SEM and micro-Raman spectroscopy (MRS). Compared conventional liquid-phase sintering, the sintering temperature was effectively lowered and the sitering time was shortened under high pressure. Controlling fracture mode was intraguanular when the sintering temperature was as low as 1400 °C under 5.0 GPa. The microstructure of single-phase equiaxed polycrystal in AlN body materials formed at 1800°C and 5.0 GPa for 50 min. There are Residual compression stress in AlN bodies prepared by high-pressure and residual compression stress of the AlN ceramics sintered at 5.0 GPa and 1700 °C for 125 min is -2.0 GPa.
Key wordsAluminium nitride    High pressure sintering    microstructure    residual stress
收稿日期: 2007-09-14     
ZTFLH:  TB321  
1 G.A.Slack,R.A.Tanzilli,R.O.Pohl,J.W.VanderSande, The intrinsic thermal conductivity of AlN,J.Phys.Chem. Solids,48,641(1987)
2 L.M.Sheppard,Aluminum nitride:a versatile but chal- lenging material,Am.Ceram.Soc.Bull.,69(11), 1801(1990)
3 A.V.Virkar,T.B.Jackson,R.A.Cutler,Thermodynamic and kinetic effects of oxygen removal on the thermal con- ductivity of aluminum nitride,J.Am.Ceram.Soc., 72(11),2031(1989)
4 T.B.Jackson,A.V.Virkar,K.L.More,R.B.Dinwiddie, R.A.Cutler,High-thermal-conductivity aluminum nitride ceramics:the effect of thermodynamic,kinetic,and mi- crostructural factors,J.Am.Ceram.Soc.,80(6), 1421(1997)
5 K.Watari,M.C.Valecillos,M.E.Brito,M.Toriyama, S.Kanzaki,Densification and thermal conductivity of AlN doped with Y_2O_3,CaO and Li_2O,J.Am.Ceram.Soc., 79(12),3103(1996)
6 Shoichi Kume,Masaki Yasuoka,Naoki Omura,Koji Watari,Effect of zirconia addition on dielectric loss and microstructure of aluminum nitride ceramics,Ceram.Int., 33(2),269(2007)
7 XIONG Yah,FU Zhengyi,WANG Yucheng,Fabrication of transparent A1N ceramics by spark plasma sintering, Chin.J.Mater.Res.,19(5),555(2005) (熊焰,傅正义,王玉成,放电等离子烧结制备透明AlN陶瓷,材料研究学报,19(5),555(2005))
8 A.Witek,M.Bockowski,A.Presz,M.Wroblewski, S.Krukowski,W.Wlosinski,K.Jablonski,Synthesis of oxygen-free aluminium nitride ceramics,J.Mater.Sci., 33(13),3321(1998)
9 Z.Y.Lu,Y.C.Teng,Q.L.Liao,D.Li,The study of AIN ceramics sintered at superhigh pressure with belt-type press technology,J.Mater.Sci.:Mater.Elect.,16(8), 483(2005)
10 Hiroyuki Ichimaru,Giuseppe Pezzotti,Raman microprobe mapping of residual and bridging stress fields in AlN ce- ramics,Mater.Sci.Eng.A,326(2),261(2002)
11 H.A.Ma,X.P.Jia,L.X.Chen,P.W.Zhu,G.Z.Ren, W.L.Guo,X.Q.Fu,G.T.Zou,Z.A.Ren,G.C.Che, Z.X.Zhao,Superhard MgB_2 bulk material prepared by high-pressure sintering,J.Phys.:Condens.Matter, 14(44),11181(2002)
12 LEI Zhen Kun,KANG Yi Lan,HU Ming,QIU Yu,XU Han,NIU Hong-Pan,An experimental analysis of residual stress measurements in porous silicon using micro-raman spectroscopy,Chin.Phys.Lett.,21(2),403(2004)
13 M.Hirano,K.Kato,T.Isobe,T.Hirano,Sintering and char- acterization of fully dense aluminium nitride ceramics,J. Mater.Sci.,28(17),4725(1993)
14 Y.W.Kim,H.C.Park,Y.B.Lee,K.D.Oh,R.Stevens,Reac- tion sintering and microstructural development in the sys- tem Al_2O_3-AlN,J.Eur.Ceram.Soc.,21(13),2383(2001)
15 T.Prokofyeva,M.Seon,J.Vanbuskirk,M.Holtz, S.A.Nikishin,N.N.Faleev,H.Temkin,S.Zollner,Vi- brational properties of A1N grown on(111)-oriented silicon,Phys.Rev.B.,63(12),125313(2001)
16 L.Grabner,Spectroscopic technique for the measurement of residual stress in sintered A1203,J.Appl.Phys.,49(2), 580(1978)
17 I.Gorczyca,N.E.Christensen,P.Perlin,I.Grzegory,J.Jun, M.Bockowski,High pressure phase transition in alu- minium nitride,Solid State Comun.,79(12),1033(1991)
18 M.Ueno,A.Onodera,O.Shimomura,K.Takemura,X-ray observation of the structural phase transition of aluminum nitride under high pressure,Phys.Rev.B.,45(17), 10123(1992)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.