Please wait a minute...
材料研究学报  2005, Vol. 19 Issue (4): 348-353    
  论文 本期目录 | 过刊浏览 |
尖晶石锰酸锂的组成对其结构和性能的影响
阚素荣; 卢世刚; 黄松涛
北京有色金属研究总院
引用本文:

阚素荣; 卢世刚; 黄松涛 . 尖晶石锰酸锂的组成对其结构和性能的影响[J]. 材料研究学报, 2005, 19(4): 348-353.

全文: PDF(596 KB)  
摘要: 以电解二氧化锰和碳酸锂为原料用高温固相法合成了尖晶石锰酸锂, 在锂与锰的原子比从0.95 : 2到1.1 : 2范围内, 其结构为单一尖晶石相,晶格常数和比容量随着锂锰比的增加呈现出先增大后降低的变化规律.在锂锰比为1.0 : 2和1.02 : 2附近, 晶格常数和比容量分别达到最大.这种变化规律与锂离子在晶格中的位置有关. 在锂锰比从1.0 : 2到1.1 : 2的范围内,随着锂锰比的增加, 尖晶石锰酸锂嵌脱锂反应过程的动力学极化逐渐降低,大电流性能逐渐提高. 以尖晶石锰酸锂为正极, MCMB为负极组装了423048型电池,锂锰比从1.0 : 2到1.1 : 2, 电池循环稳定性随锰酸锂的锂锰比的增大而提高.
关键词 无机非金属材料锰酸锂锂锰配比    
Key words
收稿日期: 1900-01-01     
1 L.E.Freed,G.Vunjak-Novakovic,R.J.Biron,D.B.Eagles, D.C.Lesnoy,S.K.Barlow,Biodegradable polymer scaffolds for tissue engineering,Biotechnology,12,689(1994)
2 CHEN Jida,CUI Lei,LIU Wei,CAO Yilin,The de- velopment on solvent casting/particulate leaching,China Biotechnology,23(4),32(2003) (陈际达,崔磊,刘伟,曹谊林,溶剂浇铸/颗粒沥滤技术制备组织工程支架材料,中国生物工程杂志,23(4),32(2003))
3 K.Whang,T.K.Goldstick,K.E.Healy,A biodegradable polymer scaffold for delivery of osteotropic factors,Bio- materials,21,2545(2000)
4 M.Honda,T.Yada,M.Ueda,K.Kimata,Cartilage forma- tion by cultured chondrocytes in a new sca.old made of poly(L-lactidee-caprolactone)sponge,J.Oral Maxillofac. Surg.,58,767(2000)
5 C.J.Chuong,Y.C.Fung,Three-dimensional stress distri- bution in arteries,J.Biomech.Eng.,105,268(1983)
6 K.Takamizawa,K.Hayashi,Strain energy density function and uniform strain hypothesis for arterial mechanics,J Biomechanics,20,7(1987)
7 A.Park,B.Wu,L.G.Griflith,Integration of surface modifi- cation and 3D fabrication techniques to prepare patterned poly(L-lactide)substrates allowing regionally selective cell adhesion,J.Biomater.Sci.Polym.Ed.,9,89(1998)
8 GAO Jianping,MA Penggao,YU Jiugao,YAO Kangde, Tissue engineering and biodegradable macromolecular scaffold,Polymer Bulletin,4,89(2000) (高建平,马朋高,于九皋,姚康德,组织工程与生物可降解高分子骨架,高分子通报,4,89(2000))
9 G.R.D.Evans,K.Brandt,M.S.Widmer,L.Lu, R.K.Meszlenyi,P.K.Gupta,In vivo evaluation of poly(L-lactic acid)porous conduits for peripheral nerve regeneration.Biomaterials,20,1109(1999)
10 D.J.Mooney,D.F.Baldwin,Novel approach to fabricate porous sponges of poly(D,L-lactic-co-giycolic acid)with- out the use of organic solvents,Biomaterials,17(14), 1417(1996)
11 M.H.Sheridan,L.D.Shea,D.J.Mooney,Bioabsorbable polymer scaffolds for tissue engineering capable of sus- tained growth factor delivery,Journal of Controlled Re- lease,64,91(2000)
12 XING Yubin,LI Lihua,ZHOU Changren,PLA/TCP porous scaffolds for tissue engineering fabricated by re- peatedly cycling extraction with supercritical CO_2,Jour- nal of Functional Materials Contents,36(12),1909(2005) (邢禹彬,李立华,周长忍,超临界CO_2反复循环萃取法制备PLA/TCP多孔组织工程支架材料.功能材料,36(12),1909(2005))
13 ZHANG Run,DENG Zhengxing,LI Lihua,ZHOU Changren,Preparation of porous PLA scaffold materials by supercritical CO_2 fluid technique,Chinese Journal of Materials Research,17(6),665(2003) (张润,邓政兴,李立华,周长忍,用超临界CO_2法制备聚乳酸三维多孔支架材料,材料研究学报,17(6),665(2003))
14 Robin A.Quirk,Supercritical fluid technologies and tissue engineering scaffolds,Current Opinion in Solid State and Materials Science,8,313(2004)
15 ZHU Meixiang,MU Changdao,LIN Wei,SHI Zongjie, Advantage of collagen as biomaterials and its application, Chemical World,3,161(2003) (朱梅湘,穆畅道,林炜,史宗洁,胶原作为生物医学材料的优势与应用,化学世界,3,161(2003)
16 L.D.Harris,B.S.Kim,D.J.Mooney,Open pore biodegrad- able matrices formed with gas foaming,Biomed.Mater. Res.,42(3),396(1998)
17 A.Tampieri,G.Ceiotti,S.Sprio,A.Delcogliano, S.Franzese,Porosity-graded hydroxyapatite ceramics to replace natural bone,Biomaterials,22,1365(2001)
18 S.Lowell,J.E.Shields,Powder Surface Area and Porosity, (New York,Chapman and Hall,1984)p.72
19 John A.Dean,Lange's handbook of chemistry(13th ed.) (迪安J.A.主编,尚久方,操时杰,辛无名,郑飞勇译,兰氏化学手册,第十三版中文版(北京,科学出版社,1991))
20 XING Yuqing,WU Guiguo,XING Jun,Chemosynthesis of perfectly degradable plastics polyactic acid,Engingeer- ing Plastics Application,30(12),57(2002) (邢玉清,吴贵国,邢军,化学合成全降解塑料-聚乳酸,工程塑料应用,30(12),57(2002))
21 V.Charulatha,A.Rajaram,Influence of different crosslink- ing treatments on the physical properties of collagen mem- branes,Biomaterials,24,759(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.