Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (4): 429-434    
  论文 本期目录 | 过刊浏览 |
微波烧结多孔$\beta$--TCP/HA双相生物陶瓷的性能
孙璐薇;冉均国;苟立;季金苟
四川大学
Study on microwave sintering of porous $\beta$--TCP/HA biphasic bioceramics
;;;
四川大学
引用本文:

孙璐薇; 冉均国; 苟立; 季金苟 . 微波烧结多孔$\beta$--TCP/HA双相生物陶瓷的性能[J]. 材料研究学报, 2004, 18(4): 429-434.
, , , . Study on microwave sintering of porous $\beta$--TCP/HA biphasic bioceramics[J]. Chin J Mater Res, 2004, 18(4): 429-434.

全文: PDF(2298 KB)  
摘要: 用微波烧结法制备出多孔$\beta$--TCP/HA双相生物陶瓷, 研究了烧结温度、 烧结时间及加热速度对生物陶瓷性能的影响. 优化烧结工艺后, 得到了平均晶粒尺寸约400 nm, 气孔率约48\%, 强度为 1.10 MPa的多孔$\beta$--TCP/HA双相陶瓷. 用微波烧结方法可以制备出良好的多孔$\beta$--TCP/HA双相生物陶瓷, 其线收缩率和抗压强度随着烧结温度的升高和烧结时间的延长而增大. 与常规马弗炉烧结相比, 在多孔$\beta$--TCP/HA双相生物陶瓷的线收缩率和抗压强度相同的情况下, 微波烧结温度降低了大约100℃, 提高了烧结效率, 降低了能耗. 微波烧结钙磷生物陶瓷具有更好的生物活性.
关键词 无机非金属材料多孔$\beta$--TCP/HA陶瓷    
Abstract:Porous $\beta$--TCP/HA biphasic bioceramics were sintered by a microwave processing system to improve both the mechanical strength and the bioactivity. Through the optimization of sintering conditions, such as the sintering temperature, the holding time and the heating speed, porous bioceramics with average crystal size of 400 nm, porosity of 48\%, and tensile strength of 1.10 MPa were prepared. To achieve similar linear shrinkage and tensile strength, the microwave sintering temperature reduced about 100℃. The comparison between conventional sintered specimens and microwave sintered specimens showed that the latter exhibit smaller grain size and higher tensile strength. After immersion in simulated body fluid, the amount of bone--like apatite formed on the specimens sintered by microwave processing system was more than that of specimens sintered by conventional furnace. The results indicate that it is possible to improve both the mechanical strength and bioactivity of Ca--P bioceramics by microwave sintering.
Key wordsinorganic non-metallic materials    porous$\beta$--TCP/HA biphasic ceramic    microwave sintering    sinterin
收稿日期: 2004-09-01     
ZTFLH:  TQ174  
1 M.A.Janney, H.D.Kimrey, M.A.Schmidt, J. Am. Ceram. Soc., 74(7) , 1675(1991)
2 ZHANG Jinsong, CAO Lihua, YANG Yougjin, SHEN Xuexun, SHEN Zhixiang, XIA Fei, Materials Review, 2, 34(1994) (张劲松,曹丽华,杨永进,沈学逊,沈志翔,夏非,材料导报,2, 34(1994) )
3 Jinsong Zhang, Lihua Cao, Yongjin Yang, Yunsiang Diao, Xuexuan Shen, J. Mater. Sci. Technol., 15(5) , 419(1999)
4 ZHANG Jinsong, YANG Yougjin, CAO Lihua, DIAO Yunxiang, SHEN Xuexun, Chinese Journal of Materials Research, 13(6) , 587(1999) (张劲松,杨永进,曹丽华,刁云翔,沈学逊,材料研究学报,13(6) ,587(1999) )
5 FENG Jingwei, WEN Shulin, Science In China (Series A), 3, 332(1991) (冯景伟,温树林,中国科学 A 辑,3, 332(1991) )
6 Mark T. Fulmer, Ira C Ison, Christine R. Hankermayer, Brent R. Constantz, Hohn Ross, Biomaterials, 23, 751(2002)
7 B.Grimm, A.W.Miles, I.G.Turner, J. Mater. Sci: Materials in Medicine, 12, 929(2001)
8 R.Z.Legeros, S.Lin, R.Rohanizadeh, J. Mater. Sci: Materials in Medicine, 14, 201(2003)
9 G.Daculsi, Biomaterials, 19, 1473(1998)
10 T.Kokubo, S.Ito, T.Yamamuro, J. Biomed. Mater. Res., 24, 331(1990)
11 Sung-Tag Oh, Ken-ichi Tajima, Motohide Ando, Tatsuki Ohji, Materials Letters, 48, 215(2001)
12 J.D.de Bruijn, H.Yuan, R.Dekker, Osteoinducive Biomimetic Calcium-Phosphate Coatings and their Poten-tial Use as Tissue-Engineering Scaffolds, in Bone Engineering, edited by Davies JE (Toronto, Canada, em squared incorporated, 2000) p.421
13 L Xiuha, Xishun Zhou trans., Dissolution Equilibrium in Analytical Chemistry (Beijing, People's Education Press, 1980) p.244(L 休哈著,周锡顺译,分析化学中的溶解平衡(北京,人民教育出版社,1980) p.244)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.