Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (10): 743-754    DOI: 10.11901/1005.3093.2024.519
  研究论文 本期目录 | 过刊浏览 |
热处理对双金属管道内衬管材Inconel 625耐晶间腐蚀性能的影响
苏锐1,2, 单以银1,3(), 严伟1,3, 刘庚1,2, 任毅4, 史显波1,3
1 中国科学技术大学材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国科学院核用材料与安全评价重点实验室 沈阳 110016
4 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
Effect of Heat Treatment on Intergranular Corrosion Resistance of Inconel 625 Used as Inner Lining for X65 Steel Based Bimetallic Pipes
SU Rui1,2, SHAN Yiyin1,3(), YAN Wei1,3, LIU Geng1,2, REN Yi4, SHI Xianbo1,3
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Shenyang 110016, China
4 State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China
引用本文:

苏锐, 单以银, 严伟, 刘庚, 任毅, 史显波. 热处理对双金属管道内衬管材Inconel 625耐晶间腐蚀性能的影响[J]. 材料研究学报, 2025, 39(10): 743-754.
Rui SU, Yiyin SHAN, Wei YAN, Geng LIU, Yi REN, Xianbo SHI. Effect of Heat Treatment on Intergranular Corrosion Resistance of Inconel 625 Used as Inner Lining for X65 Steel Based Bimetallic Pipes[J]. Chinese Journal of Materials Research, 2025, 39(10): 743-754.

全文: PDF(24130 KB)   HTML
摘要: 

研究了热处理对双金属管道内衬管材Inconel 625耐晶间腐蚀性能的影响以及材料的微观组织和耐蚀性能与热处理参数的关系。结果表明,随着热处理温度的提高(从850 ℃到1000 ℃),Inconel 625的耐晶间腐蚀性能随之提高。Inconel 625合金在1000 ℃保温40 min后高速水冷通过合金敏化区间再经空冷的特殊热处理,其耐蚀性能最佳:这种试样的年腐蚀速率最低,表面只发生了轻微的晶间腐蚀。影响Inconel 625合金晶间腐蚀性能的关键因素是晶粒尺寸、低ΣCSL晶界比例和晶间敏化。合金的平均晶粒尺寸越大、晶界数密度越低,年腐蚀速率越低;高比例的低ΣCSL晶界能抑制腐蚀裂纹在基体中的扩展,从而使耐晶间腐蚀性能显著提高。晶界附近析出M23C6使晶界贫Cr从而降低晶界的抗腐蚀性能。

关键词 复合材料耐蚀性能硫酸腐蚀Inconel 625M23C6    
Abstract

In order to improve the overall performance of bimetallic pipelines and optimize their industrial production processes, herein, the effect of different heat treatment procedures on the intergranular corrosion resistance of Inconel 625, as the lining material for bimetallic pipes was studied by taking the pre-requirements for ensuring the performance of the substrate steel X65 into account. Results show that the relationship of heat treatment parameters with microstructure, and corrosion resistance is revealed for the Inconel 625 alloy. The alloy exhibits the best corrosion resistance when subjected to a special heat treatment procedure, which involves holding at 1000 oC for 40 min followed by rapid water quenching through the sensitization zone, and then air cooling. In this state, the alloy shows the lowest annual corrosion rate with only slight intergranular corrosion observed on the surface. As the heat treatment temperature increases from 850 oC to 1000 oC, the intergranular corrosion resistance of the alloy improves progressively. The three key factors influencing the intergranular corrosion behavior of the alloy include grain size, the proportion of low ΣCSL grain boundaries, and intergranular sensitization. The larger the average grain size and the lower the boundary density, the lower the annual corrosion rate. A higher proportion of low ΣCSL grain boundaries can effectively inhibit the propagation of corrosion cracks in the substrate, thereby significantly enhancing the intergranular corrosion resistance. The precipitation of M23C6 at grain boundaries leads to Cr depletion there, which reduces the corrosion resistance. This study clarifies the main mechanisms affecting the intergranular corrosion performance of bimetallic pipeline corrosion-resistant alloy liner and reveals their variations with heat treatment procedures. The findings provide important theoretical guidance for the industrial production of high-performance bimetallic pipelines.

Key wordscomposite    corrosion resistance    sulfuric acid corrosion    Inconel 625    M23C6
收稿日期: 2024-12-31     
ZTFLH:  TG174.3  
基金资助:工业和信息化部专项项目(2240STCZB2346);海洋装备国家重点实验室开放基金(SKLMEA-K202205);国家自然科学基金(52201093)
通讯作者: 单以银,研究员,yyshan@imr.ac.cn,研究方向为先进钢铁结构材料设计、制备、表征与使役行为
Corresponding author: SHAN Yiyin, Tel: (024)23971517, E-mail: yyshan@imr.ac.cn
作者简介: 苏 锐,男,1999年生,硕士生
图1  Inconel 625合金相图
图2  腐蚀实验装置结构图
图3  不同状态Inconel 625合金的金相组织
图4  不同状态Inconel 625合金的年腐蚀速率
图5  不同状态Inconel 625合金的腐蚀形貌
图6  不同状态Inconel 625合金腐蚀后表面XRD谱
图7  不同状态Inconel 625合金的IPF图和晶粒尺寸统计
图8  不同状态Inconel 625合金的CSL图和晶界比例统计
图9  随机晶界和ΣCSL晶界原理[32,34]
图10  不同状态Inconel 625合金的微观组织
图11  850 ℃空冷态Inconel 625合金晶界析出M23C6型碳化物的TEM分析
图12  贫Cr区导致的晶间腐蚀原理图[35]
[1] Gong K F, Zheng C B, Ju D C, et al. Corrosion of Ni-based alloy coatings prepared by laser cladding in high-temperature chloride environment [J]. Surf. Coat. Technol., 2024, 484: 130823
[2] Zhang X, Xie X S, Yang Z M, et al. A study of nickel-based corrosion resisting alloy layer obtained by double glow plasma surface alloying technique [J]. Surf. Coat. Technol., 2000, 131(1-3): 378
[3] Gao J, Sun Y, Wang K N, et al. Effect of Fe content on microstructure and corrosion resistance of Ni-based alloy formed by laser cladding [J]. Surf. Coat. Technol., 2022, 446: 128761
[4] Zhou S W, Xu T Y, Hu C, et al. Effect of different topologies on microstructure and mechanical properties of multilayer coatings deposited by laser cladding with Inconel 625 wire [J]. Surf. Coat. Technol., 2021, 421: 127299
[5] Liu X D, Fan J K, Zhang P Z, et al. Temperature dependence of deformation behavior, microstructure evolution and fracture mechanism of Inconel 625 superalloy [J]. J. Alloy. Compd., 2021, 869: 159342
[6] Gao J, Ma Q C, Sun Y, et al. Effect of Nb content on microstructure and corrosion resistance of Inconel 625 coating formed by laser cladding [J]. Surf. Coat. Technol., 2023, 458: 129311
[7] Lee H T, Wu J L. Intergranular corrosion resistance of nickel-based alloy 690 weldments [J]. Corros. Sci., 2010, 52(5): 1545
[8] Neville A, Hodgkiess T. An assessment of the corrosion behaviour of high-grade alloys in seawater at elevated temperature and under a high velocity impinging flow [J]. Corros. Sci., 1996, 38(6): 927
[9] Zhao M C, Yang K, Shan Y Y. Effect of aging treatment on mechanical property and H2S resistant behavior of acicular ferrite pipeline steels [J]. Acta Metall. Sin., 2004, 40(9): 948
[9] 赵明纯, 杨 柯, 单以银. 时效处理对针状铁素体管线钢力学性能和抗硫化氢行为的影响 [J]. 金属学报, 2004, 40(9): 948
[10] Zhao M C, Li Y H, Xiao F R, et al. Microstructural characteristic and toughening of an ultralow carbon acicular ferrite pipeline steel [J]. Acta Metall. Sin., 2002, 38(3): 283
[10] 赵明纯, 李玉海, 肖福仁 等. 超低碳针状铁素体管线钢的显微特征及强韧性行为[J]. 金属学报, 2002, 38(3): 283
[11] Zhao M C, Shan Y Y, Qu J B, et al. Acicular ferrite formation in a pipeline steel with thermo-mechanical control process [J]. Acta Metall. Sin., 2001, 37(8): 820
[11] 赵明纯, 单以银, 曲锦波 等. 控制热加工下管线钢中针状铁素体的形成 [J]. 金属学报, 2001, 37(8): 820
[12] Zhao M C, Shan Y Y, Xiao F R, et al. Study on formation and strength toughness behavior of acicular ferrite in a pipeline steel [J]. Mater. Sci. Technol., 2001, 9(4): 356
[12] 赵明纯, 单以银, 肖福仁 等. 管线钢中针状铁素体的形成及其强韧性的分析 [J]. 材料科学与工艺, 2001, 9(4): 356
[13] Zhang Y. Effect of austenitizing on the phase transformation behaviors of X65 pipeline steel [D]. Tianjin: Tianjin University, 2020
[13] 张 杨. 奥氏体化过程对X65管线钢相变行为的影响 [D]. 天津: 天津大学, 2020
[14] Qiao X. The study of microstructure and mechnical properties for pipeline-steel X65 [D]. Anshan: Liaoning University of Science and Technology, 2007
[14] 乔 馨. X65管线钢显微组织与力学性能的研究 [D]. 鞍山: 辽宁科技大学, 2007
[15] Harris J A, Scarberry R C. Effect of metallurgical reactions in INCONEL nickel-chromium-molybdenum alloy 625 on corrosion resistance in nitric acid [J]. JOM, 1971, 23(9): 45
[16] Sun D D. Effect of heat treatment on microstructure and properties of Inconel 625 alloy [D]. Nanjing: Southeast University, 2017
[16] 孙丹丹. 热处理对lnconel625合金组织与性能的影响 [D]. 南京: 东南大学, 2017
[17] Xu L Y, Shao C S, Tian L, et al. Intergranular corrosion behavior of Inconel 625 deposited by CMT/GTAW [J]. Corros. Sci., 2022, 201: 110295
[18] Wang C C, Zhang J M, Yu Z D, et al. Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt [J]. J. Nucl. Mater., 2025, 604: 155513
[19] Zhang C X, Yuan Z, Gao Q Z, et al. Precipitation kinetics and strengthening of M23C6 in novel G115 martensitic steel: utilizing secondary normalizing [J]. Prog. Nat. Sci.: Mater. Int., 2024, 34(2): 396
[20] Freund L, Langlois L, Bigot R, et al. Study of the dynamic recrystallization of Inconel 625 alloys through cogging [J]. Procedia Manuf., 2020, 50: 658
[21] Geng P H, Qin G L, Zhou J, et al. Characterization of microstructures and hot-compressive behavior of GH4169 superalloy by kinetics analysis and simulation [J]. J. Mater. Process. Technol., 2021, 288: 116879
[22] Li H L, Liu S X, Sun F X, et al. Preliminary investigation on underwater wet welding of Inconel 625 alloy: microstructure, mechanical properties and corrosion resistance [J]. J. Mater. Res. Technol., 2022, 20: 2394
[23] Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50(11): 3056
[24] Liu P, Wu Y L, Zhong X Y, et al. Quantitatively evaluating the contribution of intergranular carbides, Cr-depleted zone, and grain boundary to intergranular stress corrosion cracking of Alloy 600 in a simulated boiling water reactors environment with high oxygen concentrations [J]. Acta Mater., 2024, 269: 119794
[25] Liu Q Y, Barker R, Wang C, et al. The corrosion behaviour of stainless steels and Ni-based alloys in nitrate salts under thermal cycling conditions in concentrated solar power plants [J]. Solar Energy, 2022, 232: 169
[26] Pradhan S K, Prithiv T S, Mandal S. Through-thickness microstructural evolution during grain boundary engineering type thermomechanical processing and its implication on sensitization behavior in austenitic stainless steel [J]. Mater. Charact., 2017, 134: 134
[27] Pradhan S K, Bhuyan P, Mandal S. Influence of the individual microstructural features on pitting corrosion in type 304 austenitic stainless steel [J]. Corros. Sci., 2019, 158: 108091
[28] Pradhan S K, Bhuyan P, Mandal S. Individual and synergistic influences of microstructural features on intergranular corrosion behavior in extra-low carbon type 304L austenitic stainless steel [J]. Corros. Sci., 2018, 139: 319
[29] Li Y, Wei R S, Ta H W. Intergranular corrosion sensitivity of 316L stainless steel in non-sensitized state [J]. Corros. Prot., 1991, 12(4): 177
[29] 李 异, 韦荣松, 褟浩文. 316L不锈钢非敏化态晶间腐蚀敏感性研究 [J]. 腐蚀与防护, 1991, 12(4): 177
[30] Li Y, Zhang S H. The corrosion behaviour of UG316L/25-22-2 weld system in 1 mol/L H2SO4 [J]. J. Chin. Soc. Corros. Prot., 1992, 12(3): 263
[30] 李 异, 张士华. UG316L/25-22-2焊缝系统在H2SO4溶液中的腐蚀性能 [J]. 中国腐蚀与防护学报, 1992, 12(3): 263
[31] Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Σ3n (n≤3) boundaries in Alloy 617 [J]. Mater. Chem. Phys., 2020, 248: 122919
[32] Zhang Y Y, Wu H B, Yu X P, et al. The effect of thermomechanical treatment on the evolution of the grain boundary character distribution in a Cr0.8MnFeNi high-entropy alloy [J]. Mater. Charact., 2022, 190: 112087
[33] Soleimani Dorcheh A, Durham R N, Galetz M C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 oC [J]. Sol. Energy Mater. Sol. Cells, 2016, 144: 109
[34] Weins M, Chalmers B, Gleiter H, et al. Structure of high angle grain boundaries [J]. Scr. Metall., 1969, 3(8): 601
[35] Sahu S, Patel S K, Shekhar S. The effect of grain boundary structure on chromium carbide precipitation in alloy 600 [J]. Mater. Chem. Phys., 2021, 260: 124145
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[5] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[6] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[7] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[8] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[9] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[10] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[11] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[13] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[14] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[15] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.