|
|
菇娘果外皮衍生多孔碳的制备及其应用 |
王园园( ), 夏莹京, 董省身, 王雪芹, 柳艳修, 宋华, 刘社田( ) |
东北石油大学化学化工学院 大庆 163318 |
|
Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk |
WANG Yuanyuan( ), XIA Yingjing, DONG Xingshen, WANG Xueqin, LIU Yanxiu, SONG Hua, LIU Shetian( ) |
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China |
引用本文:
王园园, 夏莹京, 董省身, 王雪芹, 柳艳修, 宋华, 刘社田. 菇娘果外皮衍生多孔碳的制备及其应用[J]. 材料研究学报, 2025, 39(10): 755-764.
Yuanyuan WANG,
Yingjing XIA,
Xingshen DONG,
Xueqin WANG,
Yanxiu LIU,
Hua SONG,
Shetian LIU.
Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk[J]. Chinese Journal of Materials Research, 2025, 39(10): 755-764.
[1] |
Subramanian B, Veerappan M, Rajan K, et al. Fabrication of hierarchical indium vanadate materials for supercapacitor application [J]. Global Chall., 2020, 4(11): 2000002
|
[2] |
Sharma S, Chand P. Supercapacitor and electrochemical techniques: A brief review [J]. Results Chem., 2023, 5: 100885
|
[3] |
Zhang C T, Xing B L, Huang G X, et al. Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation [J]. Mater. Rep., 2018, 32(7): 1088
|
[3] |
张传涛, 邢宝林, 黄光许 等. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究 [J]. 材料导报, 2018, 32(7): 1088
|
[4] |
Wang J, Zhou J H, Zhao W Z. Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle [J]. Green Energy Intell. Transp., 2022, 1(2): 100028
|
[5] |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104(10): 4245
|
[6] |
Satpathy S, Das S, Bhattacharyya B K. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors [J]. J. Energy Storage, 2020, 27: 101044
|
[7] |
Salleh N A, Kheawhom S, Hamid N A A, et al. Electrode polymer binders for supercapacitor applications: a review [J]. J. Mater. Res. Technol., 2023, 23: 3470
|
[8] |
Zhang G Y, Wang A, Ying H, et al. Research progress on biomass-based advanced carbon materials for energy storage [J]. Mod. Chem. Ind., 2023, 43(9): 24
|
[8] |
张高月, 王 傲, 应 浩 等. 储能用生物质基先进碳材料的研究进展 [J]. 现代化工, 2023, 43(9): 24
|
[9] |
Valencia A, Muñiz-Valencia R, Ceballos-Magaña S G, et al. Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell [J]. Environ. Technol. Innovat., 2022, 25: 102076
|
[10] |
Li Y Z, Gupta R, Zhang Q Z, et al. Review of biochar production via crop residue pyrolysis: Development and perspectives [J]. Bioresour. Technol., 2023, 369: 128423
|
[11] |
Awogbemi O, Von Kallon D V. Application of biochar derived from crops residues for biofuel production [J]. Fuel Commun., 2023, 15: 100088
|
[12] |
Zhang Y L, Chen X G, Wang M Q, et al. Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(7): 3812
|
[12] |
张亚林, 陈兴刚, 王梦倩 等. 生物质炭@MnO2基超级电容器电极材料研究进展 [J]. 复合材料学报, 2023, 40(7): 3812
|
[13] |
Song X Q, Lei X P, Fan K, et al. Research progress of biomass derived carbon in supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(3): 1328
|
[13] |
宋晓琪, 雷西萍, 樊 凯 等. 基于生物质衍生炭在超级电容器中的研究进展 [J]. 复合材料学报, 2023, 40(3): 1328
|
[14] |
Yadav S P S, Bhandari S, Bhatta D, et al. Biochar application: A sustainable approach to improve soil health [J]. J. Agric. Food Res., 2023, 11: 100498
|
[15] |
Vaithyanathan V K, Goyette B, Rajagopal R. A critical review of the transformation of biomass into commodity chemicals: Prominence of pretreatments [J]. Environ. Challenges, 2023: 100700
|
[16] |
Antar M, Lyu D, Nazari M, et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization [J]. Renewable Sustainable Energy Rev., 2021, 139: 110691
|
[17] |
Song C L, Ren K, Teng Z C, et al. Preparation of activated carbon from unburned carbon in biomass fly ash and its supercapacitor performance [J]. J. Fuel Chem. Technol., 2021, 49(12): 1936
|
[17] |
宋传林, 任 科, 滕召才 等. 生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究 [J]. 燃料化学学报(中英文), 2021, 49(12): 1936
|
[18] |
Zhang D Z, Zhang Y X, Liu H L, et al. Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes [J]. J. Phys. Chem. Solids, 2023, 178: 111318
|
[19] |
Wei X, Qiu B P, Xu L, et al. High performance hierarchical porous carbon derived from waste shrimp shell for supercapacitor electrodes [J]. J. Energy Storage, 2023, 62: 106900
|
[20] |
Dai Z, Ren P G, Guo Z Z, et al. Three-dimensional porous carbon materials derived from locust for efficient NOS co-doped supercapacitors by facile self-template and in-situ doping method [J]. Fuel Process. Technol., 2021, 213: 106677
|
[21] |
Erkaya T, Dağdemir E, Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream [J]. Food Res. Int., 2012, 45(1): 331
|
[22] |
Puente L A, Pinto-Muñoz C A, Castro E S, et al. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review [J]. Food Res. Int., 2011, 44(7): 1733
|
[23] |
Al-Olayan E M, El-Khadragy M F, Aref A M, et al. The potential protective effect of Physalis peruviana L. against carbon tetrachloride‐induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP‐9 expression [J]. Oxid. Med. Cell. Longev., 2014, 2014: 381413
|
[24] |
El-Beltagi H S, Mohamed H I, Safwat G, et al. Chemical composition and biological activity of Physalis peruviana L [J]. Gesunde Pflanz., 2019, 71(2): 113
|
[25] |
Yang L, Zheng H, Liu L, et al. N, O self-doped hierarchical porous carbon materials for high-performance super-capacitors [J]. Results Chem., 2021, 3: 100109
|
[26] |
Ding F F, Li J, Du H M, et al. Highly porous heteroatom doped-carbon derived from orange peel as electrode materials for high-performance supercapacitors [J]. Int. J. Electrochem. Sci., 2020, 15(6): 5632
|
[27] |
Ran F T, Yang X B, Xu X Q, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor [J]. Chem. Eng. J., 2021, 412: 128673
|
[28] |
Wang Y H, Liu R N, Tian Y D, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors [J]. Chem. Eng. J., 2020, 384: 123263
|
[29] |
Du W M, Zhang Z R, Du L G, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors [J]. J. Alloy. Compd., 2019, 797: 1031
|
[30] |
Tang D Y, Luo Y Y, Lei W D, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications [J]. Appl. Surf. Sci., 2018, 462: 862
|
[31] |
Gao S Y, Chen Y L, Fan H, et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors [J]. J. Mater. Chem., 2014, 2A(10): 3317
|
[32] |
Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework [J]. Nat. Chem., 2016, 8(7): 718
|
[33] |
Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors [J]. Nano Energy, 2018, 47: 547
|
[34] |
Yang H F, Sun X Y, Zhu H, et al. Nano-porous carbon materials derived from different biomasses for high performance supercapacitors [J]. Ceram. Int., 2020, 46(5): 5811
|
[35] |
Zhan Y B, Zhou H M, Guo F Q, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors [J]. J. Energy Storage, 2021, 34: 102180
|
[36] |
Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors [J]. Nano Energy, 2016, 27: 482
|
[37] |
Zou K X, Deng Y F, Chen J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors [J]. J. Power Sources, 2018, 378: 579
|
[38] |
Su X L, Cheng M Y, Fu L, et al. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins [J]. J. Power Sources, 2017, 362: 27
|
[39] |
Luo Z J, Lin N, Sun M C, et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors [J]. Carbon, 2021, 173: 910
|
[40] |
Tang J G, Guo Z Y, Kong X J, et al. Soybean meal-derived heteroatoms-doped porous carbons for supercapacitor electrodes [J]. Mater. Chem. Phys., 2022, 284: 126055
|
[41] |
Wang A, Sun K, Xu R T, et al. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation [J]. J. Cleaner Prod., 2021, 283: 125385
|
[42] |
Zhang Q, Wang J L, Deng M G. Preparation of porous carbon from buckwheat husk and its electrochemical properties [J]. Int. J. Electrochem. Sci., 2022, 17(11): 221145
|
[43] |
Wang D W, Lian Y, Fu H L, et al. Flexible porous carbon nanofibers derived from cuttlefish ink as self-supporting electrodes for supercapacitors [J]. J. Power Sources, 2024, 599: 234216
|
[44] |
Liang Y N, Zhou Y Q, Smith R L, et al. Ultra-thin highly-wrinkled graphene-like nanosheets for supercapacitor electrodes via 4-nitrocatechol and solvent-induced self-assembly [J]. Carbon, 2023, 204: 495
|
[45] |
Cai N, Cheng H, Jin H, et al. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors [J]. J. Electroanal. Chem., 2020, 861: 113933
|
[46] |
Lu C X, Yu Z S, Zhang X Y, et al. ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors [J]. Energy Sources Part A-Recovery Util. Environ. Eff., 2024, 46(1): 2212
|
[47] |
Li Y J, Wang G L, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors [J]. Nano Energy, 2016, 19: 165
|
[48] |
Zhao Y T, Mu J C, Wang Y Y, et al. Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor [J]. J. Mater. Sci.: Mater. Electron., 2023, 34(6): 527
|
[49] |
Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N Co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment [J]. Int. J. Hydrog. Energy, 2021, 46(63): 31927
|
[50] |
Lobato-Peralta D R, Duque-Brito E, Orugba H O, et al. Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage [J]. Diamond Relat. Mater., 2023, 138: 110176
|
[51] |
Yang X, Wang X Q, Yu X W, et al. In-situ N, P co-doped porous carbon derived from biomass waste for supercapacitors [J]. J. Electroanal. Chem., 2024, 972: 118646
|
[52] |
Li Y J, Zou X F, Li S Q, et al. Biomass-derived B/N/P co-doped porous carbons as bifunctional materials for supercapacitors and sodium-ion batteries [J]. J. Mater. Chem., 2024, 12: 18324
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|