Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 569-582    DOI: 10.11901/1005.3093.2024.435
  研究论文 本期目录 | 过刊浏览 |
Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能
杨志儒(), 侯文涛, 周海, 杨子, 何浩, 金超
江苏大学机械工程学院 镇江 212013
Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors
YANG Zhiru(), HOU Wentao, ZHOU Hai, YANG Zi, HE Hao, JIN Chao
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
Zhiru YANG, Wentao HOU, Hai ZHOU, Zi YANG, Hao HE, Chao JIN. Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors[J]. Chinese Journal of Materials Research, 2025, 39(8): 569-582.

全文: PDF(22872 KB)   HTML
摘要: 

用水热法制备一种核壳结构的电极,其核心由Co3O4纳米线组成。使用硫代乙酰胺(TAA)对Co3O4纳米线进行硫化生成Co9S8外壳。其Co3O4纳米线核和Co9S8外壳相互连接,形成均匀分布在镍泡沫上的纳米棒。硫化时优化TAA的浓度可增多电极的活性位点,制备出电化学性能优异的电极。这种电极在电流密度为2 mA·cm-2的条件下其面积比电容为3.54 F·cm-2。电极优异的导电性和高效离子扩散,使其在电流密度为50 mA·cm-2的条件下充放电循环可达3000次,且循环后仍保持2 F·cm-2的高比电容和良好的稳定性。用Co3O4/Co9S8为正极、活性炭为负极组装的不对称超级电容器(ASC)5000次充放电循环后其比电容保持率为100%,表明其具有优异的循环稳定性。用这种Co3O4/Co9S8电极组装的软包准固态不对称超级电容器具有良好的机械柔韧性和循环稳定性。

关键词 复合材料核壳材料结构稳定性不对称超级电容器    
Abstract

The core-shell composite Co3O4/Co9S8, as electrode material was prepared by a two-step method. Firstly, Co3O4 nanowires were grown on Ni-foam by hydrothermal method, and then they were calcined. Secondly, Co3O4/Co9S8 core-shell composite materials on templates of Co3O4 nanowires were obtained via ion exchange reaction and sulfidation in the presence of thioacetamide (TAA). The nanowire core Co3O4 and shell Co9S8 are interconnected each other as uniformly distributed nanorods on the Ni-foam. Results indicated that by optimizing the TAA concentration during the second step, the electrode gained a higher number of active sites and improved electrochemical performance. At a current density of 2 mA·cm-2, the electrode exhibited a specific capacitance of 3.54 F·cm-2. Due to its excellent conductivity and efficient ion diffusion pathways, it achieved up to 3,000 charge-discharge cycles at a current density of 50 mA·cm-2, while maintaining a high specific capacitance of 2 F·cm-2 and stability after cycling. Additionally, by utilizing Co3O4/Co9S8 as the positive electrode and activated carbon as the negative electrode, an asymmetric supercapacitor was assembled. After 5,000 charge-discharge cycles, this device attained a capacitance retention rate of 100%, demonstrating outstanding cycling stability. The soft-pack quasi-solid-state asymmetric supercapacitor assembled with this Co3O4/Co9S8 electrode exhibits excellent mechanical flexibility and cycling stability.

Key wordscomposite    core-shell material    structural stability    asymmetrical supercapacitors
收稿日期: 2024-10-25     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51505194);江苏省自然科学基金(BK20150517);江苏省自然科学基金(BK20190846);江苏大学高级人才科研启动基金(15JDG033)
通讯作者: 杨志儒,副教授,yangzr2030@outlook.com,研究方向为复合材料储能器件、激光功能化表面、极端环境摩擦学
Corresponding author: YANG Zhiru, Tel: 18260632639, E-mail: yangzr2030@outlook.com
作者简介: 杨志儒,男,1981年生,博士
图1  在镍泡沫(NF)上制备Co3O4/Co9S8复合材料的示意图
图2  生长在NF上的Co3O4的SEM图像和添加不同量TAA的Co3O4/Co9S8的SEM图像
Co3O4Co3O4/Co9S8
%, mass fraction%, atomic fraction%, mass fraction%, atomic fraction
Co67.6449.5745.5634.30
O11.8131.883.6910.25
S0.310.4119.4426.91
表1  试样不同阶段的含量和其元素的百分比
图3  Co3O4/Co9S8的TEM,SAED和HRTEM图像
图4  Co3O4/Co9S8的XRD 谱
图5  Co3O4/Co9S8、Co9S8和Co3O4的Raman光谱以及C 1s、Co 2p和S 2p的X射线光电子光谱
图6  Co3O4和Co3O4/Co9S8复合材料的氮吸附/脱附等温线和孔径分布
Current densityAreal capacitance / F·cm-2
mA·cm-2Co3O4/Co9S8-ACo3O4/Co9S8-BCo3O4/Co9S8-C
22.873.542.7
52.873.42.62
102.673.42.48
252.383.182.21
501.712.581.67
表2  添加不同量TAA的Co3O4/Co9S8反应2 h的比电容
图7  Co3O4/Co9S8在三电极系统中的超级电容器性能
图8  Co3O4/Co9S8、Co3O4和Co9S8的Nyquist 图
Active materialSpecific capacitance-current densityLong-cycle performanceReferences
Co3O4/Co9S83.54 F·cm-2-2 mA·cm-2After 3000 cycles, it retains 77.42% of the initial specific capacitanceThis work
CFF1.538 F·cm-2-1.5 mA·cm-2After 10000 cycles, it retains 100% of the initial specific capacitance[34]
CC@Co(OH)2:Mn2+@T352.2 mF·cm-2-5 mA·cm-2After 1000 cycles, it retains 85.5% of the initial specific capacitance[35]
Co-1/NF1.925 F·cm-2-1 mA·cm-2After 10000 cycles, it retains 80.3% of the initial specific capacitance[36]
FSCs1.29 F·cm-2-2 mA·cm-2After 5000 cycles, it retains 80.13% of the initial specific capacitance[37]
Co(OH)22.313 F·cm-2-0.4 mA·cm-2After 7000 cycles, it retains 83% of the initial specific capacitance[38]
表3  钴基材料的性能对比
图9  不同放大倍数的Co3O4/Co9S8循环3000次后的SEM图像以及循环前后的Nyquist图
图10  Co3O4/Co9S8 || AC ASC的性能、不同扫描速率的CV曲线及其对应的电容、不同电流速率的恒流放电曲线及其对应的电容以及电流速率为25 mA·cm-2的长期充放电性能
图11  组装QSS-ASC的示意图、不同电流速率的恒流充放电曲线、不同扫描速率的CV曲线及其对应的电容、电流密度为50 mA·cm-2 QSS-ASC处于平展-弯曲状态的长期充放电性能,
[1] Li T, Saadatnia Z, Chen T H, et al. Facile material extrusion of 3D wearable conductive-polymer micro-super-capacitors [J]. Addit. Manuf., 2023, 74: 103714
[2] Mohseni S, Brent A C. Probabilistic sizing and scheduling co-optimisation of hybrid battery/super-capacitor energy storage systems in micro-grids [J]. J. Energy Storage, 2023, 73: 109172
[3] Priya R P, Baradeswaran A, Bagubali A. Energy storage improvement of graphene based super capacitors [J]. Mater. Today. Proc., 2023, 78: 919
[4] SappaniMuthu M, Ajith P, Agnes J, et al. Optical, thermal, electrochemical, properties of nano graphene oxide / nickel oxide nano composite suitable for super capacitor applications [J]. Mater. Today. Proc., 2023. doi: 10.1016/j.matpr.2023.05.615
[5] Yadav D K, Yadav A, Singh S, et al. Study of bismuth oxide/polystyrene composites as flexible electrodes for super capacitors [J]. Mater. Today. Proc., 2023. doi: 10.1016/j.matpr.2023.02.327
[6] Awad M A, Hendi A A, Natarajan S, et al. Wet chemical synthesis and characterization of FeVO4 nanoparticles for super capacitor as energy storage device [J]. J. King Saud Univ. Sci., 2023, 35(8): 102857
[7] Munirathnam R, Rumana F S M, Manjunatha S, et al. Tulsi mediated green synthesis of zinc doped CeO2 for super capacitor and display applications [J]. J. Sci.-Adv. Mater. Dev., 2023, 8(2): 100551
[8] Tian H, Liu H X, Sun X, et al. Se confined in N-doped mesoporous carbon opal as anode for K-Se capacitors with super-long cycle life [J]. J. Alloy. Compd., 2023, 937: 168376
[9] Zhang W Y, Li X N, Kang H W, et al. Redox-active 7-aminoindole and carbon nanotubes co-modified reduced graphene oxide for Zn-ion hybrid capacitors with excellent energy density and super-long cycling stability [J]. J. Power Sources, 2023, 562: 232789
[10] Girirajan M, Bojarajan A K, Pulidindi I N, et al. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors [J]. Coord. Chem. Rev., 2024, 518: 216080
[11] Lamba P, Singh P, Singh P, et al. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance [J]. J. Energy Storage, 2022, 48: 103871
[12] Siveswari A, Gowthami V. Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications [J]. Chem. Phys. Impact., 2024, 9: 100666
[13] Ahuja K, Sallaz V, Nuwayhid R B, et al. Ultra-thin on-chip ALD LiPON capacitors for high frequency application [J]. J. Power Sources, 2023, 575: 233056
[14] Meenakshi G, Manjunath B C, Prashantha S C, et al. Super capacitor, electrochemical measurement and sun light driven photocatalytic applications of CuFe2O4 NPs synthesized from bio-resource extract [J]. Sens. Int., 2023, 4: 100237
[15] Siddiqui R, Rani M, Ahmad Shah A, et al. Fabrication of tricarboxylate-neodymium metal organic frameworks and its nanocomposite with graphene oxide by hydrothermal synthesis for a symmetric supercapacitor electrode material [J]. Mater Sci. Eng., 2023, 295B: 116530
[16] Issa M Y A, Atay G Y. Investigation of radar absorbing hybrid structures reinforced by cobalt oxide (Co3O4), copper-copper oxide (Cu-Cu2O), and barium hexaferrite (BaFe12O19) synthesized by sol-gel [J]. Mater. Chem. Phys., 2024, 318: 129307
[17] Luo J B, Wang X Z, Zhang J, et al. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution [J]. J. Fuel Chem. Technol., 2023, 51(5): 571
[18] Mustafa A, Alsafari I A, Somaily H H, et al. Fabrication, characterization of NiO–Co3O4/rGO based nanohybrid and application in the development of non-enzymatic glucose sensor [J]. Physica, 2023, 648B: 414404
[19] Tian X X, Yin M, Zhang L, et al. Mesoporous ZnO@CO3O4 nanosphere for sensitive detection of 3-hydroxy-2-butanone [J]. J. Photochem. Photobiol., 2022, 11: 100135
[20] Alhaddad M, Ismail A A, Alghamdi Y G, et al. Co3O4 nanoparticles accommodated mesoporous TiO2 framework as an excellent photocatalyst with enhanced photocatalytic properties [J]. Opt. Mater., 2022, 131: 112643
[21] Eremina E A, Matushkina A D, Malakhova A G, et al. Aerogels based on reduced graphite oxide and cobalt oxide nanoparticles (rGO@Co3O4) as sorbents of antibiotics and dyes from aqueous solutions [J]. Mendeleev Commun., 2024, 34(3): 376
[22] Zhang Y J, Yan H C, Liu J M, et al. Simple preparation of Co3O4 with a controlled shape and excellent lithium storage performance [J]. Int. J. Electrochem. Sci., 2020, 15(4): 2894
[23] Ali F, Khalid N R, Tahir M B, et al. Capacitive properties of novel Sb-doped Co3O4 electrode material synthesized by hydrothermal method [J]. Ceram. Int., 2021, 47(22): 32210
[24] Li Y L, Wang S C, Wu J K, et al. One-step hydrothermal synthesis of hybrid core-shell Co3O4@SnO2-SnO for supercapacitor electrodes [J]. Ceram. Int., 2020, 46(10): 15793
[25] Lu Y, Yang W J, Li W H, et al. Room-temperature sulfurization for obtaining Co3O4/CoS core-shell nanosheets as supercapacitor electrodes [J]. J. Alloy. Compd., 2020, 818: 152877
[26] Pei D Y, Bao J P, Li Y Y, et al. Three-dimensional Co3O4/CoS hierarchical nanoneedle arrays electrode grown on nickel foam for high-performance asymmetric capacitors [J]. J. Energy Storage, 2022, 51: 104483
[27] Liu X X, He Q, Wang Y, et al. MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor [J]. Electrochim. Acta, 2020, 346: 136201
[28] Hadjiev V G, Iliev M N, Vergilov I. The raman spectra of Co3O4 [J]. J. Phys., 1988, 21C(7) : L199
[29] Ruan H C, Li Y F, Qiu H Y, et al. Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion bat­teries [J]. J. Alloy. Compd., 2014, 588: 357
[30] Wen J, Li S Z, Li B R, et al. Synthesis of three di­mensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high per­formance supercapacitor application [J]. J. Power Sources, 2015, 284: 279
[31] Deng S J, Shen S H, Zhong Y, et al. Corrigendum to “Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction” 26 (2017) 1203-1209 [J]. J. Energy Chem., 2021, 57: 544
[32] Chen H, Mu J J, Bian Y H, et al. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage [J]. New Carbon Mater., 2023, 38(3): 510
[33] Li J, Zou Y J, Li B, et al. Polypyrrole-wrapped NiCo2S4 nanoneedles as an electrode material for supercapacitor applications [J]. Ceram. Int., 2021, 47(12): 16562
[34] Wu Z F, Sun Q L, Huang X S, et al. Cross channel between ordinary supercapacitors and flexible supercapacitors-A flexible supercapacitor based on carbon fiber felt framework [J]. J. Energy Storage, 2024, 103: 114190
[35] Zhang W F, Shan Y, Yu X G, et al. A Ti3C2T x -encapsulated Mn2+-doped Co(OH)2 nanosheets electrode grown on carbon cloth for low-temperature flexible supercapacitors [J]. Electrochim. Acta, 2025, 513: 145606
[36] Qiu P F, Tan X N, Huang Z Y, et al. Thiol-functionalized conductive Co-MOF and its derivatives S-doped Co(OH)2 nanoflowers for high-performance supercapacitors [J]. J. Colloid Interface Sci., 2025, 679: 995
[37] Cheng X Y, Wang D, Ke H Z, et al. Hierarchical NiCo2S4/PANI/CNT nanostructures grown on graphene polyamide blend fiber as effective electrode for supercapacitors [J]. Compos. Commun., 2022, 30: 101073
[38] Jagdale P B, Patil S A, Sfeir A, et al. Large-area ultrathin 2D Co(OH)2 nanosheets: a bifunctional electrode material for supercapacitor and water oxidation [J]. Mater. Today Energy, 2024, 44: 101608
[39] Akram A, Liaqat M A, Javed S, et al. Ultrahigh performance asymmetric supercapacitor devices with synergetic interaction between metal organic frameworks/graphene nano platelets and redox additive electrolyte [J]. J. Alloy. Compd., 2022, 891: 161961
[40] Dong S, Song Y L, Fang Y Z, et al. Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors [J]. Carbon, 2021, 178: 1
[41] Li L L, Ding Y H, Huang H J, et al. Controlled synthesis of unique Co9S8 nanostructures with carbon coating as advanced electrode for solid-state asymmetric supercapacitors [J]. J. Colloid Interface Sci., 2019, 540: 389
[1] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[2] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[3] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[4] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[5] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[6] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[7] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[8] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[9] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[10] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[11] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[12] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[13] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[14] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[15] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.