|
|
g-C3N4/CdS S型异质结复合光催化材料的制备及其性能 |
王炳林1,2, 柴一峰1,2( ), 谭圣霞1,2, 郭升伟1,2, 姜如1,2, 朱中华1,2, 张禹涛1,2, 黄桂芳3, 黄维清3 |
1.湖南科技大学物理与电子科学学院 湘潭 411201 2.湖南科技大学 智能传感器与新型传感材料湖南省重点实验室 湘潭 411201 3.湖南大学物理与微电子科学学院 长沙 410082 |
|
Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction |
WANG Binglin1,2, CHAI Yifeng1,2( ), TAN Shengxia1,2, GUO Shengwei1,2, JIANG Ru1,2, ZHU Zhonghua1,2, ZHANG Yutao1,2, HUANG Guifang3, HUANG Weiqing3 |
1.School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, China 2.Key Laboratory of Intelligent Sensor and Advance Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China 3.School of Physics and Electronics, Hunan University, Changsha 410082, China |
引用本文:
王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
Binglin WANG,
Yifeng CHAI,
Shengxia TAN,
Shengwei GUO,
Ru JIANG,
Zhonghua ZHU,
Yutao ZHANG,
Guifang HUANG,
Weiqing HUANG.
Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. Chinese Journal of Materials Research, 2025, 39(9): 712-720.
[1] |
Zhou J W, Shan T S, Zhang F S, et al. A novel dual-channel carbon nitride homojunction with nanofibrous carbon for significantly boosting photocatalytic hydrogen peroxide production [J]. Adv. Fiber Mater., 2024, 6: 387
|
[2] |
Xue Y J, Ji Y H, Wang X Y, et al. Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity [J]. Green Energy Environ., 2023, 8: 864
|
[3] |
Mehtab A, Ahmad T. Unveiling the bifunctional photo/electrocatalytic activity of in situ grown CdSe QDs on g-C3N4 nanosheet Z-scheme heterostructures for efficient hydrogen generation [J]. ACS Catal., 2024, 14: 691
|
[4] |
Wang Y M, Li Y Y, Huang T, et al. Co-Cu-P nanosheet-based open architecture for high-performance oxygen evolution reaction [J]. Appl. Phys., 2021, 127A: 224
|
[5] |
Zeng F, Huang T, Li B, et al. Novel urchin-like CoNiP as advanced pH-universal electrocatalysts toward hydrogen evolution reaction [J]. J. Phys., 2021, 54D: 365502
|
[6] |
Zhang X, Yang P, Chen H S, et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal [J]. Chem. Eng. J., 2024, 479: 147609
|
[7] |
Ma L, Guan R F, Kang W X, et al. Preparation of highly dispersed Ni single-atom doped ultrathin g-C3N4 nanosheets by metal vapor exfoliation for efficient photocatalytic CO2 reduction [J]. J. Colloid Interface Sci., 2024, 660: 381
|
[8] |
Zhang H W, Lu Y X, Li B, et al. Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation [J]. J. Mater. Sci. Technol., 2021, 86: 210
|
[9] |
Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution [J]. Appl. Catal., 2018, 221B: 302
|
[10] |
Ma Y H, Zhang Y, Xie G S, et al. Isolated Cu sites in CdS hollow nanocubes with doping-location-dependent performance for photocatalytic CO2 reduction [J]. ACS Catal., 2024, 14: 1468
|
[11] |
Chai Y F, Huang G F, Wang L L, et al. Enhanced photocatalytic activity and stability of Zn x Cd1- x /TiO2 nanocomposites synthesized by chemical bath deposition [J]. Mater. Lett., 2015, 142: 133
|
[12] |
Salehi G, Bagherzadeh M, Abazari R, et al. Visible light-driven photocatalytic degradation of methylene blue dye using a highly efficient Mg-Al LDH@g-C3N4@Ag3PO4 nanocomposite [J]. ACS Omega, 2024, 9: 4581
|
[13] |
Wu X H, Tan L H, Chen G Q, et al. g-C3N4 -based S-scheme heterojunction photocatalysts [J]. Sci. China Mater., 2024, 67: 444
|
[14] |
Gao R, Lin W S, Lin H X, et al. Construction of (001)-TiO2/g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue [J]. React. Kinet. Mech. Catal., 2025, 138: 455
|
[15] |
Zhao Q R, Liu S N, Chen S Y, et al. Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B [J]. Chem. Phys. Lett., 2022, 805: 139908
|
[16] |
Wang D D, Miao C, Li H J, et al. A directional built-in electric field assisted 2D/1D g-C3N4/CeO2 S-scheme heterojunction for efficient RhB degradation and highly-selective CO2 photoreduction [J]. Mater. Res. Bull., 2024, 170: 112552
|
[17] |
Zhang J Q, Li J, Liu X Y, et al. Ternary nanocomposite ZnO-g-C3N4-Go for enhanced photocatalytic degradation of RhB [J]. Opt. Mater., 2021, 119: 111351
|
[18] |
Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
|
[18] |
任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
|
[19] |
Duan L Y, Lu S S, Duan F, et al. Preparation and photocatalytic activity of Co3O4/g-C3N4 composite photocatalysts via one-pot synthesis [J]. Chin. J. Inorg. Chem., 2019, 35: 793
|
[19] |
段丽颖, 路姗姗, 段 芳 等. 一锅法制备Co3O4/g-C3N4复合光催化剂及其光催化性能 [J]. 无机化学学报, 2019, 35: 793
|
[20] |
Zhang X, Zhu K L, Xie C, et al. Vertically implanting MoSe2 nanosheets on superior thin C-doped g-C3N4 nanosheets towards interface-enhanced electrochemical activities [J]. Carbon, 2024, 220: 118884
|
[21] |
Zhang Q, Yue M, Chen P, et al. Accelerating photocatalytic hydrogen production by anchoring Pt single atoms on few-layer g-C3N4 nanosheets with Pt-N coordination [J]. J. Mater. Chem., 2024, 12C: 3437
|
[22] |
Chai Y F, Zhu Z H, Liu M W, et al. Controllable preparation of Zn x Cd1 - x S films by chemical bath deposition for enhanced photocatalytic activity [J]. Int. J. Electrochem. Sci., 2021, 16: 210755
|
[23] |
Chai Y F, Zhu Z H, Liu M W, et al. Construction of Zn x Cd1- x S/CeO2 composites for enhanced photocatalytic activity and stability by chemical precipitation method [J]. Mod. Phys. Lett., 2021, 35B: 2150333
|
[24] |
Gotipamul P P, Reddy D, Saravanan P, et al. Enhanced photoelectrochemical water splitting, and photocatalytic and piezo-photocatalytic pollutant removal performance over CdS/g-C3N4/ZnO ternary heterojunctions [J]. Mater. Res. Bull., 2024, 180: 113063
|
[25] |
Fang J F, Xie K L, Kang Q, et al. Facile fabrication of g-C3N4/CdS heterojunctions with enhanced visible-light photocatalytic degradation performances [J]. J. Sci. Adv. Mater. Dev., 2022, 7: 100409
|
[26] |
Nazir F, Razza A, Sabahat S, et al. Fabrication of CdS NRs/MoS2@g-C3N4 nanotubes for efficient photoelectrochemical hydrogen production [J]. Mater. Chem. Phys., 2024, 323: 129668
|
[27] |
Wang J M, Yu L M, Wang Z J, et al. Constructing 0D/2D Z-scheme heterojunction of CdS/g-C3N4 with enhanced photocatalytic activity for H2 evolution [J]. Catal. Lett., 2021, 151: 3550
|
[28] |
Wu T F, Huang J F, Cheng G, et al. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite [J]. Mater. Lett., 2021, 292: 129274
|
[29] |
Chong B, Chen L, Han D Z, et al. CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion [J]. Chin. J. Catal., 2019, 40: 959
doi: 10.1016/S1872-2067(19)63355-3
|
[30] |
Zhou H, Du B, Yang P B, et al. Sodium gluconate assisted synthesis of nest-like Bi/β-Bi2O3 heterojunction and its visible-light driven photocatalytic activities [J]. Chin. J. Mater. Res., 2024, 38(7): 549
|
[30] |
周 慧, 杜 彬, 杨鹏斌 等. 鸟巢状Bi/β-Bi2O3异质结的制备及其可见光催化性能 [J]. 材料研究学报, 2024, 38(7): 549
|
[31] |
Li G, Wang B, Zhang J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photo-catalytic activity and degradation of erythromycin and tetracycline [J]. Appl. Surf. Sci., 2019, 478: 105664
|
[32] |
Li J, Ma D D, Zou Y J, et al. The modification of graphite carbon nitride and its applications in photocatalysis [J]. Mater. China, 2024, 43(7): 565
|
[32] |
李 俊, 马丹丹, 邹雅珺 等. 石墨相氮化碳的改性及其在光催化中的应用进展 [J]. 中国材料进展, 2024, 43(7): 565
|
[33] |
Guo J Y, Fu Y J, Zhang K J, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction [J]. Acta Mater. Compos. Sin, 2023, 40: 904
|
[33] |
郭佳允, 傅炀杰, 张柯杰 等. g-C3N4/POPs异质结制备及其可见光催化性能 [J]. 复合材料学报, 2023, 40: 904
|
[34] |
Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation [J]. Chin. J. Catal., 2021, 42: 56
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|