Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 712-720    DOI: 10.11901/1005.3093.2024.503
  研究论文 本期目录 | 过刊浏览 |
g-C3N4/CdS S型异质结复合光催化材料的制备及其性能
王炳林1,2, 柴一峰1,2(), 谭圣霞1,2, 郭升伟1,2, 姜如1,2, 朱中华1,2, 张禹涛1,2, 黄桂芳3, 黄维清3
1.湖南科技大学物理与电子科学学院 湘潭 411201
2.湖南科技大学 智能传感器与新型传感材料湖南省重点实验室 湘潭 411201
3.湖南大学物理与微电子科学学院 长沙 410082
Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction
WANG Binglin1,2, CHAI Yifeng1,2(), TAN Shengxia1,2, GUO Shengwei1,2, JIANG Ru1,2, ZHU Zhonghua1,2, ZHANG Yutao1,2, HUANG Guifang3, HUANG Weiqing3
1.School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, China
2.Key Laboratory of Intelligent Sensor and Advance Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
3.School of Physics and Electronics, Hunan University, Changsha 410082, China
引用本文:

王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
Binglin WANG, Yifeng CHAI, Shengxia TAN, Shengwei GUO, Ru JIANG, Zhonghua ZHU, Yutao ZHANG, Guifang HUANG, Weiqing HUANG. Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. Chinese Journal of Materials Research, 2025, 39(9): 712-720.

全文: PDF(10635 KB)   HTML
摘要: 

用水热法将CdS与煅烧的g-C3N4复合制备出g-C3N4/CdS S型异质结复合光催化材料,使用SEM、XRD、PL和XPS等手段对其表征并进行功函数测试和自由基捕获实验,研究了这种材料的光催化性能。结果表明,在模拟太阳光(氙灯)的照射下,这种光催化材料(g-C3N4质量分数为1%)对甲基蓝污染物(MB)的降解率为99.62% (是纯g-C3N4降解效率的12倍);循环降解三次后其降解率仍然达到82.64%,表明其稳定性良好。其原因是,在这种材料的g-C3N4和CdS之间形成了S型异质结,电子通过其界面从CdS转移到g-C3N4上产生了内建电场,实现了光生电子和空穴在空间上的高速转移,使催化剂具有较强的氧化还原性能。

关键词 复合材料g-C3N4/CdSS型异质结水热法    
Abstract

A S-type heterojunction composite photocatalyst of g-C3N4/CdS was synthesized by hydrothermal method. The composite material was characterized by SEM, XRD, PL, and XPS. Its photocatalytic performance was evaluated by work function test and free radical trapping test. Under a simulated sunlight irradiation (Xenon lamp), the degradation rate of methylene blue reached 99.62% when in a 10 mg/L methyl blue suspension with addition of with photocatalytic material* containing g-C3N4-1%CdS, which was 12.11 times higher than that of blank g-C3N4. After three cycles, the photocatalytic degradation rate of the catalyst still reached 82.64%, indicating good stability. The enhanced photocatalytic activity may be attributed to the formation of a S-type heterojunction between g-C3N4 and CdS, where electrons transfer from CdS to g-C3N4, creating a built-in electric field that facilitates rapid separation of photogenerated electrons and holes in space, resulting in a strong redox capability of the catalyst. This study may provide a valuable reference for the design and development of high-performance photocatalytic materials.

Key wordscomposite    g-C3N4/CdS    S-type heterojunction    hydrothermal method
收稿日期: 2024-12-19     
ZTFLH:  O643.36  
基金资助:湖南省教育厅重点项目(23A0355);湖南省教育厅优秀青年项目(23B0482)
通讯作者: 柴一峰,博士,yfc@hnust.edu.cn,研究方向为纳米复合材料制备及其光催化
Corresponding author: CHAI Yifeng, Tel: 15116263919, E-mail: yfc@hnust.edu.cn
作者简介: 王炳林,男,2001年生,硕士生
图1  二元复合纳米材料GCS的合成流程和催化降解流程
图2  CN、CdS、GCS(0.5%)、GCS(1%)和GCS(2%)的吸收光谱
图3  g-C3N4、CdS和复合材料GCS (5 μm且局部放大到1 μm)的SEM图像以及复合材料GCS中的元素分布和能谱
图4  CN,CdS,GCS (0.5%),GCS (1%)和GCS (2%)复合材料的XRD谱
图5  不同波长激发GCS(1%)复合样品的荧光光谱和同一波长激发样品的荧光光谱
图6  GCS、CN、CdS、C 1s、N 1s、Cd 3d和S 2p的XPS总谱和轨道电子谱
图7  催化剂对MB的降解曲线及其动力学曲线
图8  GCS (1%)催化剂的循环降解图和降解柱状图
图9  GCS(1%)异质结对反应性物质的捕获
图10  CN、CdS 和GCS的功函数
图11  二元复合光催化剂(GCS)降解MB机理
[1] Zhou J W, Shan T S, Zhang F S, et al. A novel dual-channel carbon nitride homojunction with nanofibrous carbon for significantly boosting photocatalytic hydrogen peroxide production [J]. Adv. Fiber Mater., 2024, 6: 387
[2] Xue Y J, Ji Y H, Wang X Y, et al. Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity [J]. Green Energy Environ., 2023, 8: 864
[3] Mehtab A, Ahmad T. Unveiling the bifunctional photo/electrocatalytic activity of in situ grown CdSe QDs on g-C3N4 nanosheet Z-scheme heterostructures for efficient hydrogen generation [J]. ACS Catal., 2024, 14: 691
[4] Wang Y M, Li Y Y, Huang T, et al. Co-Cu-P nanosheet-based open architecture for high-performance oxygen evolution reaction [J]. Appl. Phys., 2021, 127A: 224
[5] Zeng F, Huang T, Li B, et al. Novel urchin-like CoNiP as advanced pH-universal electrocatalysts toward hydrogen evolution reaction [J]. J. Phys., 2021, 54D: 365502
[6] Zhang X, Yang P, Chen H S, et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal [J]. Chem. Eng. J., 2024, 479: 147609
[7] Ma L, Guan R F, Kang W X, et al. Preparation of highly dispersed Ni single-atom doped ultrathin g-C3N4 nanosheets by metal vapor exfoliation for efficient photocatalytic CO2 reduction [J]. J. Colloid Interface Sci., 2024, 660: 381
[8] Zhang H W, Lu Y X, Li B, et al. Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation [J]. J. Mater. Sci. Technol., 2021, 86: 210
[9] Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution [J]. Appl. Catal., 2018, 221B: 302
[10] Ma Y H, Zhang Y, Xie G S, et al. Isolated Cu sites in CdS hollow nanocubes with doping-location-dependent performance for photocatalytic CO2 reduction [J]. ACS Catal., 2024, 14: 1468
[11] Chai Y F, Huang G F, Wang L L, et al. Enhanced photocatalytic activity and stability of Zn x Cd1- x /TiO2 nanocomposites synthesized by chemical bath deposition [J]. Mater. Lett., 2015, 142: 133
[12] Salehi G, Bagherzadeh M, Abazari R, et al. Visible light-driven photocatalytic degradation of methylene blue dye using a highly efficient Mg-Al LDH@g-C3N4@Ag3PO4 nanocomposite [J]. ACS Omega, 2024, 9: 4581
[13] Wu X H, Tan L H, Chen G Q, et al. g-C3N4 -based S-scheme heterojunction photocatalysts [J]. Sci. China Mater., 2024, 67: 444
[14] Gao R, Lin W S, Lin H X, et al. Construction of (001)-TiO2/g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue [J]. React. Kinet. Mech. Catal., 2025, 138: 455
[15] Zhao Q R, Liu S N, Chen S Y, et al. Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B [J]. Chem. Phys. Lett., 2022, 805: 139908
[16] Wang D D, Miao C, Li H J, et al. A directional built-in electric field assisted 2D/1D g-C3N4/CeO2 S-scheme heterojunction for efficient RhB degradation and highly-selective CO2 photoreduction [J]. Mater. Res. Bull., 2024, 170: 112552
[17] Zhang J Q, Li J, Liu X Y, et al. Ternary nanocomposite ZnO-g-C3N4-Go for enhanced photocatalytic degradation of RhB [J]. Opt. Mater., 2021, 119: 111351
[18] Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
[18] 任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
[19] Duan L Y, Lu S S, Duan F, et al. Preparation and photocatalytic activity of Co3O4/g-C3N4 composite photocatalysts via one-pot synthesis [J]. Chin. J. Inorg. Chem., 2019, 35: 793
[19] 段丽颖, 路姗姗, 段 芳 等. 一锅法制备Co3O4/g-C3N4复合光催化剂及其光催化性能 [J]. 无机化学学报, 2019, 35: 793
[20] Zhang X, Zhu K L, Xie C, et al. Vertically implanting MoSe2 nanosheets on superior thin C-doped g-C3N4 nanosheets towards interface-enhanced electrochemical activities [J]. Carbon, 2024, 220: 118884
[21] Zhang Q, Yue M, Chen P, et al. Accelerating photocatalytic hydrogen production by anchoring Pt single atoms on few-layer g-C3N4 nanosheets with Pt-N coordination [J]. J. Mater. Chem., 2024, 12C: 3437
[22] Chai Y F, Zhu Z H, Liu M W, et al. Controllable preparation of Zn x Cd1 - x S films by chemical bath deposition for enhanced photocatalytic activity [J]. Int. J. Electrochem. Sci., 2021, 16: 210755
[23] Chai Y F, Zhu Z H, Liu M W, et al. Construction of Zn x Cd1- x S/CeO2 composites for enhanced photocatalytic activity and stability by chemical precipitation method [J]. Mod. Phys. Lett., 2021, 35B: 2150333
[24] Gotipamul P P, Reddy D, Saravanan P, et al. Enhanced photoelectrochemical water splitting, and photocatalytic and piezo-photocatalytic pollutant removal performance over CdS/g-C3N4/ZnO ternary heterojunctions [J]. Mater. Res. Bull., 2024, 180: 113063
[25] Fang J F, Xie K L, Kang Q, et al. Facile fabrication of g-C3N4/CdS heterojunctions with enhanced visible-light photocatalytic degradation performances [J]. J. Sci. Adv. Mater. Dev., 2022, 7: 100409
[26] Nazir F, Razza A, Sabahat S, et al. Fabrication of CdS NRs/MoS2@g-C3N4 nanotubes for efficient photoelectrochemical hydrogen production [J]. Mater. Chem. Phys., 2024, 323: 129668
[27] Wang J M, Yu L M, Wang Z J, et al. Constructing 0D/2D Z-scheme heterojunction of CdS/g-C3N4 with enhanced photocatalytic activity for H2 evolution [J]. Catal. Lett., 2021, 151: 3550
[28] Wu T F, Huang J F, Cheng G, et al. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite [J]. Mater. Lett., 2021, 292: 129274
[29] Chong B, Chen L, Han D Z, et al. CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion [J]. Chin. J. Catal., 2019, 40: 959
doi: 10.1016/S1872-2067(19)63355-3
[30] Zhou H, Du B, Yang P B, et al. Sodium gluconate assisted synthesis of nest-like Bi/β-Bi2O3 heterojunction and its visible-light driven photocatalytic activities [J]. Chin. J. Mater. Res., 2024, 38(7): 549
[30] 周 慧, 杜 彬, 杨鹏斌 等. 鸟巢状Bi/β-Bi2O3异质结的制备及其可见光催化性能 [J]. 材料研究学报, 2024, 38(7): 549
[31] Li G, Wang B, Zhang J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photo-catalytic activity and degradation of erythromycin and tetracycline [J]. Appl. Surf. Sci., 2019, 478: 105664
[32] Li J, Ma D D, Zou Y J, et al. The modification of graphite carbon nitride and its applications in photocatalysis [J]. Mater. China, 2024, 43(7): 565
[32] 李 俊, 马丹丹, 邹雅珺 等. 石墨相氮化碳的改性及其在光催化中的应用进展 [J]. 中国材料进展, 2024, 43(7): 565
[33] Guo J Y, Fu Y J, Zhang K J, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction [J]. Acta Mater. Compos. Sin, 2023, 40: 904
[33] 郭佳允, 傅炀杰, 张柯杰 等. g-C3N4/POPs异质结制备及其可见光催化性能 [J]. 复合材料学报, 2023, 40: 904
[34] Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation [J]. Chin. J. Catal., 2021, 42: 56
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[4] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[5] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[6] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[7] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[8] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[9] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[10] 段玉, 王倩, 刘宏臣, 车远军, 石磊, 白慧娟. 油页岩灰基磁性分子筛的制备及其对亚甲基蓝的吸附性能[J]. 材料研究学报, 2025, 39(6): 463-473.
[11] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[13] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[14] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[15] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.