Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 661-672    DOI: 10.11901/1005.3093.2024.437
  研究论文 本期目录 | 过刊浏览 |
有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能
张若云1, 王伟1(), 宫鹏辉2, 丁士杰1, 刘显昊1, 孙壮1, 吕凡凡1, 高原1, 王快社1
1.西安建筑科技大学冶金工程学院 西安 710055
2.西安建筑科技大学机电工程学院 西安 710055
High-temperature Tribological Performance of Organic-inorganic Hybrid Modified Phosphate/Graphite Lubricating Coatings
ZHANG Ruoyun1, WANG Wei1(), GONG Penghui2, DING Shijie1, LIU Xianhao1, SUN Zhuang1, LV Fanfan1, GAO Yuan1, WANG Kuaishe1
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
Ruoyun ZHANG, Wei WANG, Penghui GONG, Shijie DING, Xianhao LIU, Zhuang SUN, Fanfan LV, Yuan GAO, Kuaishe WANG. High-temperature Tribological Performance of Organic-inorganic Hybrid Modified Phosphate/Graphite Lubricating Coatings[J]. Chinese Journal of Materials Research, 2025, 39(9): 661-672.

全文: PDF(28903 KB)   HTML
摘要: 

用有机-无机原位杂化将磷酸二氢铝(AP)改性,再以AP和杂化AP为粘结剂在TA1纯钛表面制备了石墨基粘结润滑涂层。使用红外光谱仪、X射线光电子能谱仪和X射线衍射仪等手段表征杂化AP粘结剂的结构和性能,用扫描电子显微镜和三维白光轮廓干涉仪表征固体润滑涂层的磨损表面,并用多功能摩擦磨损实验机测试了不同涂层的高温(700~900 ℃)摩擦学性能。结果表明,AP与苯基三甲氧基硅烷(PTMS)杂化生成了以P-O-Si为骨架的化学结构。PTMS含量为10%的杂化AP涂层其高温润滑性能最佳,温度为850 ℃的摩擦系数(0.1219)和磨损率(0.57 × 10-3 mm3·N-1·m-1)比杂化前分别降低了77%和82%。在杂化AP粘结剂中生成的网状物质提高了层状石墨的粘结固体润滑涂层的高温摩擦学性能。同时,网状物质填充涂层内部的孔洞和裂纹使涂层的磨损率降低。

关键词 复合材料石墨高温固体润滑涂层摩擦性能润滑机制    
Abstract

The phosphoric acid dihydrogen aluminum (AP) was modified by in situ organic-inorganic hybridization technique, and then the graphite-based lubrication coatings were applied on TA1 pure titanium surfaces by taking AP and hybridized AP as binding agent respectively. The prepared hybridized AP was characterized by means of infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The high-temperature tribological performance of different coatings was assessed via RTEC MFT-5000 multifunctional friction and wear tester at 700 oC to 900 oC, which then were characterized by means of scanning electron microscopy and three-dimensional white light contour interferometry. The results indicated that AP was successfully hybridized with phenyltrimethoxysilane (PTMS), forming a chemical structure with P-O-Si as the skeleton. The coating with hybridized AP exhibited optimal lubrication performance at high temperatures when the PTMS content was 10%. Specifically, by tribological test at 850 oC, the coating with hybridized AP presented coefficient of friction 0.1219 and wear rate 0.57 × 10-3 mm3·N-1·m-1, which were reduced by 77% and 82%, respectively, compared to those with simple AP. It follows that the reticulated material generated in the hybridized AP binder can enhanced the high-temperature tribological properties of the lubricated coatings containing laminated graphite. Furthermore, this reticulated material can fill the holes and cracks within the coating, thereby reducing the wear rate and improving wear resistance of coatings.

Key wordscomposite    graphite    high-temperature solid lubricant coating    tribological properties    lubrication mechanism
收稿日期: 2024-10-25     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51975450);陕西省科技新星基金(2021KJXX-32);西安市创新能力强基计划-先进制造技术攻关项目(21XJZZ0031);陕西省教育厅服务地方专项(22JC047);国家自然科学基金(52305438);陕西省重点研发计划项目(2023-YBGY-383);陕西省重点研发计划项目(2023GXLH-063)
通讯作者: 王伟,教授,gackmol@163.com,研究方向为材料加工中的摩擦与润滑
Corresponding author: WANG Wei, Tel: 13609264618, E-mail: gackmol@163.com
作者简介: 张若云,女,2000年生,硕士
图1  涂层制备过程的示意图
图2  杂化AP粘结剂的化学结构和杂化合成路径
图3  AP涂层和杂化AP涂层在不同温度下的SEM图像
ElementABCD
C92.378.518.81.85
Al0.329.5214.3712.2
P2.055350.9215.33
O5.3348.271.0356.06
Si\\7.6114.56
表1  涂层表面点扫描原子质量比
图4  AP粘结涂层在不同温度下的摩擦曲线、平均摩擦系数和磨损率
图5  在不同温度下TA1盘AP粘结涂层磨痕表面的磨损轨道、三维轮廓图以及二维高度轮廓曲线
图6  AP涂层TA1盘磨痕、磨屑表面在850 ℃下的SEM和EDS照片
图7  不同含量PTMS的涂层在800 ℃下的摩擦曲线、平均摩擦系数和磨损率
图8  10%杂化AP作为粘结剂在不同温度下的摩擦曲线、平均摩擦系数和磨损率
图9  在不同温度下10%杂化AP粘结涂层TA1盘磨痕表面的磨损轨道、三维轮廓图以及二维高度轮廓曲线
图10  在不同温度下10%杂化AP粘结涂层Si3N4小球的磨损轨道、三维轮廓图像和对应的二维高度轮廓曲线
图11  在850 °C下10%杂化AP粘结涂层TA1盘磨痕处的SEM和EDS照片
图12  10%杂化AP粘结涂层在850和900 ℃的XRD谱
图13  10%杂化AP粘结涂层在850 °C的TA1盘磨痕处XPS谱
图14  有机-无机杂化AP粘结剂的润滑机理
[1] Zhen Y, Chen M H, Yu C T, et al. High temperature self-lubricating Ti-Mo-Ag composites with exceptional high mechanical strength and wear resistance [J]. J. Mater. Sci. Technol., 2024, 180: 80
doi: 10.1016/j.jmst.2023.09.012
[2] Zhao S T, Zhang R P, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility [J]. Science, 2021, 373(6561): 1363
doi: 10.1126/science.abe7252 pmid: 34529490
[3] Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15(8): 809
doi: 10.1038/nmat4709 pmid: 27443900
[4] Li L X, Rao K P, Lou Y, et al. A study on hot extrusion of Ti-6Al-4V using simulations and experiments [J]. Int. J. Mech. Sci., 2002, 44(12): 2415
[5] Reeves C J, Menezes P L, Lovell M R, et al. Tribology of solid lubricants [A]. MenezesP L, NosonovskyM, IngoleS P, et al. Tribology for Scientists and Engineers: from Basics to Advanced Concepts [M]. New York: Springer, 2013: 447
[6] Wan H Q, Jia Y L, Ye Y P, et al. Tribological behavior of polyimide/epoxy resin-polytetrafluoroethylene bonded solid lubricant coatings filled with in situ-synthesized silver nanoparticles [J]. Prog. Org. Coat., 2017, 106: 111
[7] Gong H J, Yu C C, Zhang L, et al. Intelligent lubricating materials: A review [J]. Composites, 2020, 202B: 108450
[8] Liu Y F, Ge X Y, Li J J. Graphene lubrication [J]. Appl. Mater. Today, 2020, 20: 100662
[9] Bian J J, Nicola L. On the lubrication of rough copper surfaces with graphene [J]. Tribol. Int., 2021, 156: 106837
[10] Watanabe S, Miyake S, Murakawa M. Tribological properties of cubic, amorphous and hexagonal boron nitride films [J]. Surf. Coat. Technol., 1991, 49(1-3): 406
[11] Zhang G L, Liu Y, Guo F, et al. Friction characteristics of impregnated and non-impregnated graphite against cemented carbide under water lubrication [J]. J. Mater. Sci. Technol., 2017, 10(33): 1203
[12] Berman D, Erdemir A, Sumant A V. Graphene: A new emerging lubricant [J]. Mater. Today, 2014, 17(1): 31
[13] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars [J]. Tribol. Int., 2012, 47: 221
[14] Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces [J]. Carbon, 2013, 54: 454
[15] Bhowmick S, Banerji A, Alpas A T. Role of humidity in reducing sliding friction of multilayered graphene [J]. Carbon, 2015, 87: 374
[16] Allam I M. Solid lubricants for applications at elevated temperatures [J]. J. Mater. Sci., 1991, 26: 3977
[17] Cheng H, Gao S Y, Duan D L, et al. Study on the tribological behavior and the interaction between friction and oxidation of graphite reinforced by impregnated phosphate at high temperatures [J]. Materials (Basel), 2023, 16(9): 3517
[18] Huai W J, Zhang C H, Wen S Z. Graphite-based solid lubricant for high-temperature lubrication [J]. Friction, 2021, 9(6): 1660
[19] Jia Y L, Chen L, Feng X Z, et al. Tribological behavior of molybdenum disulfide bonded solid lubricating coatings cured with organosiloxane-modified phosphate binder [J]. RSC Adv., 2015, 5: 69606
[20] Li Y Z, Chen G C, Zhu S Z, et al. Preparation of an aluminium phosphate binder and its influence on the bonding strength of coating [J]. Bull. Mater. Sci., 2019, 42: 200
[21] Huang H W, Wang H H, Xie Y H, et al. Incorporation of boron nitride nanosheets in zinc phosphate coatings on mild steel to enhance corrosion resistance [J]. Surf. Coat. Technol., 2019, 374: 935
[22] Vippola M, Ahmaniemi S, Keränen J, et al. Aluminum phosphate sealed alumina coating: characterization of microstructure [J]. Mat. Sci. Eng., 2002, 323A(1-2) : 1
[23] Chen Z Y, Gudo X P, Zhang L Q, et al. Anticorrosion mechanism of Al-modified phosphate ceramic coating in the high-temperature marine atmosphere [J]. Surf. Coat. Technol., 2022, 441: 128572
[24] Madhusudhana A M, Mohana K N. Synthesis of self-healing inhibitor releasing nanocapsules blended phenol novolac resin for high performance anticorrosion coating [J]. Colloid Surf., 2022, 643A: 128762
[25] Yang J, Chen J R, Song J H. Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and Raman spectra [J]. Vib. Spectrosc., 2009, 50: 178
[26] Massiot P, Centeno M A, Carrizosa I, et al. Thermal evolution of sol-gel-obtained phosphosilicate solids (SiPO) [J]. J. Non-Cryst. Solids, 2001, 292: 158
[27] Yin J, Wu H B, Shu X D. Shape-property synergistic control in closed die forging of large-diameter copper alloy valve body [J]. Int. J. Adv. Manuf. Technol., 2023, 128(5): 2137
[28] Wang W, Peng Y Q, Ding S J, et al. Tribological properties of graphite-based solid lubricating coatings for Ti-6Al-4V alloy at 500~800 oC [J]. Chin. J. Mater. Res., 2023, 37(6): 432
[28] 王 伟, 彭怡晴, 丁士杰 等. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能 [J]. 材料研究学报, 2023, 37(6): 432
[29] Fan K, Chen X Y, Wang X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene [J]. ACS Appl. Mater. Interfaces, 2018, 10(34): 28828
[30] Mo Y H, Pang L Y, Liu Q L, et al. Preparation and performance characterization of modified phosphate adhesives [J]. Mater. Rep., 2023, 37(14): 54
[30] 默玉海, 庞凌燕, 刘千龙 等. 改性磷酸盐胶黏剂的制备及性能表征 [J]. 材料导报, 2023, 37(14): 54
[31] Yan H, Fan X Q, Cai M, et al. Amino-functionalized Ti3C2T x loading ZIF-8 nanocontainer@ benzotriazole as multifunctional composite filler towards self-healing epoxy coating [J]. J. Colloid Interface Sci., 2021, 602: 131
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[5] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[6] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[7] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[8] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[9] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[10] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[11] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[12] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[13] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[14] 彭怡和, 欧宝立, 彭勇洁, 温乜一, 程天宇, 陈迪名. CeO2-GO/EP防腐复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 259-271.
[15] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.